1
Compute the following sum.
\begin{equation*}
\left[
\begin{array}{rrr}
3 \amp -2 \amp 5 \\
11 \amp 0 \amp -1 \\
6 \amp 4 \amp 6 \\
\end{array}
\right] +
\left[
\begin{array}{rrr}
-4 \amp 3 \amp 1 \\
3 \amp -2 \amp 2 \\
5 \amp 15 \amp -1 \\
\end{array}
\right]
\end{equation*}
2
Simplify the following linear combination of two, \(2\times 2\) matrices.
\begin{equation*}
2
\left[
\begin{array}{rrr}
5 \amp 3 \\
1 \amp -1
\end{array}
\right] +
(-3)
\left[
\begin{array}{rrr}
-4 \amp 1 \\
1 \amp -2
\end{array}
\right]
\end{equation*}
3
If the multiplication is defined, compute the product, otherwise write “UNDEFINED” on your paper.
\begin{equation*}
\left[
\begin{array}{rrr}
-2 \amp 6 \\
0 \amp 2
\end{array}
\right]
\left[
\begin{array}{rrr}
1 \amp 3 \amp -3 \\
-1 \amp 4 \amp 0
\end{array}
\right]
\end{equation*}
\begin{equation*}
\left[
\begin{array}{rrr}
3 \amp 5 \amp -4
\end{array}
\right]
\left[
\begin{array}{rrr}
2 \\
1 \\
4
\end{array}
\right]
\end{equation*}
\begin{equation*}
\left[
\begin{array}{rrr}
2 \\
1 \\
4
\end{array}
\right]
\left[
\begin{array}{rrr}
3 \amp 5 \amp -4
\end{array}
\right]
\end{equation*}
\begin{equation*}
\left[
\begin{array}{rr}
2 \amp 3 \\
1 \amp -3\\
0 \amp 4
\end{array}
\right]
\left[
\begin{array}{rrr}
1 \amp 0 \amp -2 \\
8 \amp 5 \amp 1 \\
1 \amp -1 \amp 4
\end{array}
\right]
\end{equation*}
4
Compute \(A^{-1}\text{.}\) And show that \(AA^{-1} = I\) and \(A^{-1}A = I\text{.}\)
\begin{equation*}
\left[
\begin{array}{rrr}
4 \amp 0 \\
3 \amp 5
\end{array}
\right]
\end{equation*}
Answer
\begin{equation*}
\frac{1}{20}
\left[
\begin{array}{rrr}
5 \amp 0 \\
-3 \amp 4
\end{array}
\right]
\end{equation*}
5
Compute the inverse by augmenting the matrix on the right-hand side with the identity matrix and performing elementary row operations on the augmented matrix until the left side is the identity.
\begin{equation*}
A = \left[
\begin{array}{rrr}
2 \amp 3 \amp 0 \\
1 \amp 1 \amp -1 \\
0 \amp 2 \amp 2
\end{array}
\right]
\end{equation*}
Answer
\begin{equation*}
\left[
\begin{array}{rrr}
2 \amp -3 \amp -\frac{3}{2} \\
-1 \amp 2 \amp 1 \\
1 \amp -2 \amp -\frac{1}{2}
\end{array}
\right]
\end{equation*}
6
Compute the inverse by augmenting the matrix on the right-hand side with the identity matrix and performing elementary row operations on the augmented matrix until the left side is the identity.
\begin{equation*}
A = \left[
\begin{array}{rrr}
1 \amp 5 \amp 1 \\
2 \amp 5 \amp 0 \\
2 \amp 7 \amp 1
\end{array}
\right]
\end{equation*}
7
Compute the inverse by augmenting the matrix on the right-hand side with the identity matrix and performing elementary row operations on the augmented matrix until the left side is the identity.
\begin{equation*}
A = \left[
\begin{array}{rrrr}
0 \amp 0 \amp 1 \amp 0\\
1 \amp 0 \amp 0 \amp 0\\
0 \amp 1 \amp 2 \amp 0\\
3 \amp 0 \amp 0 \amp 1
\end{array}
\right]
\end{equation*}
8
Compute the inverse by augmenting the matrix on the right-hand side with the identity matrix and performing elementary row operations on the augmented matrix until the left side is the identity.
\begin{equation*}
\left[
\begin{array}{rrr}
1 \amp 4 \amp 3 \\
1 \amp 4 \amp 5 \\
2 \amp 5 \amp 1
\end{array}
\right]
\end{equation*}
Answer
\begin{equation*}
\frac{1}{6}
\left[
\begin{array}{rrr}
-21 \amp 11 \amp 8 \\
9 \amp -5 \amp -2 \\
-3 \amp 3 \amp 0
\end{array}
\right]
\end{equation*}
9
Suppose that \(A, B, C\) are invertible \(n\times
n\) matrices. Use the definition of the inverse of a matrix to show that:
\begin{equation*}
(ABC)^{-1} = C^{-1}B^{-1}A^{-1}
\end{equation*}
10
A diagonal matrix is a matrix with nonzero entries down its diagonal and zeros everywhere else. Assuming \(a_1, a_2, \ldots, a_n \ne 0\text{,}\) what is the inverse of:
\begin{equation*}
\left[
\begin{array}{rrrrr}
a_1 \amp 0 \amp 0 \amp \cdots \amp 0\\
0 \amp a_2\amp 0 \amp \cdots \amp 0 \\
0 \amp 0 \amp a_3 \amp \amp \vdots \\
\vdots \amp \vdots \amp \amp \ddots \amp 0 \\
0 \amp 0 \amp \cdots \amp 0 \amp a_n
\end{array}
\right]
\end{equation*}
If you don't know the answer, start small by computing the inverse of a \(2\times 2\) diagonal matrix, and then try to discover the pattern.