1
Verify that the functions \(y_1 = e^{x}\) and \(y_2 =
e^{-x}\) are solutions to the DE:
\begin{equation*}
y'' - y = 0
\end{equation*}
then find a particular solution of the form \(y = c_1 y_1
+ c_2 y_2\) which satisfies the initial conditions \(y(0) = 0, y'(0) = 5\text{.}\)
Answer\(y(x) = \tfrac{5}{2}e^{x} - \tfrac{5}{2}e^{-x}\)
2
Verify that the functions \(y_1 = e^{5x}\) and \(y_2 =
xe^{5x}\) are solutions to the DE:
\begin{equation*}
y'' - 10 y' + 25 y = 0
\end{equation*}
then find a particular solution of the form \(y = c_1 y_1
+ c_2 y_2\) which satisfies the initial conditions \(y(0) = 3, y'(0) = 13\text{.}\)
Answer\(y(x) = 3 e^{5x} - 2 xe^{5x}\)
3
Verify that the functions \(y_1 = e^{-3x}\cos 2x\) and \(y_2 = e^{-3x} \sin 2x\) are solutions to the DE:
\begin{equation*}
y'' + 6 y' + 13 y = 0
\end{equation*}
then find a particular solution of the form \(y = c_1 y_1
+ c_2 y_2\) which satisfies the initial conditions \(y(0) = 2, y'(0) = 0\text{.}\)
Answer\(y(x) = 2 e^{-3x} \cos 2x + 3 e^{-3x} \sin 2x\)
4
Let \(x_p\) be a solution to the nonhomogeneous matrix equation:
\begin{equation}
A \vec{x} = \vec{b},
\label{eqn-matrix-nonhomogeneous}\tag{6.1.1}
\end{equation}
and let \(x_h\) be a solution to the the associated homogeneous equation:
\begin{equation}
A \vec{x} = \vec{0},
\label{eqn-matrix-homogeneous}\tag{6.1.2}
\end{equation}
Show that \(\vec{x} = \vec{x}_h + \vec{x}_p\) is also a solution the the nonhomogeneous equation (6.1.1).
HintUse the fact that matrix multiplication distributes.
5
Let \(y_p\) be a solution to the nonhomogeneous equation:
\begin{equation}
y'' + py' + qy = f(x),
\label{eqn-second-order-nonhomogeneous}\tag{6.1.3}
\end{equation}
and let \(y_h\) be a solution to the the associated homogeneous equation:
\begin{equation}
y'' + py' + qy = 0.
\label{eqn-second-order-homogeneous}\tag{6.1.4}
\end{equation}
Show that \(y = y_h + y_p\) is also a solution the the nonhomogeneous equation (6.1.3).
HintWrite the differential equation as a linear operator and use the fact linear operators distribute.
6
Show directly that the given functions are linearly dependent on the real line. Find a nontrivial linear combination of the given function that equals zero for all values of \(x\text{.}\)
\begin{equation*}
f(x) = 5 \quad
g(x) = 2-3x^2 \quad
h(x) = 10 + 15x^2
\end{equation*}
7
Use the Wronskian to prove that the following functions are linearly independent on the interval \((-\infty,
\infty)\text{.}\)
\begin{equation*}
f(x) = 1 \quad
g(x) = x \quad
h(x) = x^2
\end{equation*}
8
Use the Wronskian to prove that the following functions are linearly independent on the interval \((-\infty,
\infty)\text{.}\)
\begin{equation*}
f(x) = e^x \quad
g(x) = e^{2x} \quad
h(x) = e^{3x}
\end{equation*}