Definition5.5.1
A linear map or linear transformation is a function, \begin{equation*} L:V \to W \end{equation*} between two vector spaces \(V\) and \(W\) (the domain and codomain respectively) satisfying for all \(\vec{u}, \vec{v} \in V\) and for all \(c \in \R\text{:}\)
- \(L(\vec{u}+\vec{v}) = L\vec{u} + L\vec{v}\text{,}\)
- \(L(\vec{cu}) = c(L\vec{u})\text{.}\)