Previous: slags2 Up: ../lapack-s.html Next: slagtm
NAME SLAGTF - factorize the matrix (T - lambda*I), where T is an n by n tridiagonal matrix and lambda is a scalar, as T - lambda*I = PLU, SYNOPSIS SUBROUTINE SLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO ) INTEGER INFO, N REAL LAMBDA, TOL INTEGER IN( * ) REAL A( * ), B( * ), C( * ), D( * ) PURPOSE SLAGTF factorizes the matrix (T - lambda*I), where T is an n by n tridiagonal matrix and lambda is a scalar, as where P is a permutation matrix, L is a unit lower tridiago- nal matrix with at most one non-zero sub-diagonal elements per column and U is an upper triangular matrix with at most two non-zero super-diagonal elements per column. The factorization is obtained by Gaussian elimination with partial pivoting and implicit row scaling. The parameter LAMBDA is included in the routine so that SLAGTF may be used, in conjunction with SLAGTS, to obtain eigenvectors of T by inverse iteration. ARGUMENTS N (input) INTEGER The order of the matrix T. A (input/output) REAL array, dimension (N) On entry, A must contain the diagonal elements of T. On exit, A is overwritten by the n diagonal elements of the upper triangular matrix U of the factoriza- tion of T. LAMBDA (input) REAL On entry, the scalar lambda. B (input/output) REAL array, dimension (N-1) On entry, B must contain the (n-1) super-diagonal elements of T. On exit, B is overwritten by the (n-1) super- diagonal elements of the matrix U of the factoriza- tion of T. C (input/output) REAL array, dimension (N-1) On entry, C must contain the (n-1) sub-diagonal ele- ments of T. On exit, C is overwritten by the (n-1) sub-diagonal elements of the matrix L of the factorization of T. TOL (input) REAL On entry, a relative tolerance used to indicate whether or not the matrix (T - lambda*I) is nearly singular. TOL should normally be chose as approxi- mately the largest relative error in the elements of T. For example, if the elements of T are correct to about 4 significant figures, then TOL should be set to about 5*10**(-4). If TOL is supplied as less than eps, where eps is the relative machine precision, then the value eps is used in place of TOL. D (output) REAL array, dimension (N-2) On exit, D is overwritten by the (n-2) second super-diagonal elements of the matrix U of the fac- torization of T. IN (output) INTEGER array, dimension (N) On exit, IN contains details of the permutation matrix P. If an interchange occurred at the kth step of the elimination, then IN(k) = 1, otherwise IN(k) = 0. The element IN(n) returns the smallest positive integer j such that abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL, where norm( A(j) ) denotes the sum of the absolute values of the jth row of the matrix A. If no such j exists then IN(n) is returned as zero. If IN(n) is returned as positive, then a diagonal element of U is small, indicating that (T - lambda*I) is singular or nearly singular, INFO (output) = 0 : successful exit < 0: if INFO = -k, the kth argument had an illegal value