Previous: slag2 Up: ../lapack-s.html Next: slagtf
NAME SLAGS2 - compute 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Z' denotes the transpose of Z SYNOPSIS SUBROUTINE SLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV, CSQ, SNQ ) LOGICAL UPPER REAL A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ, SNU, SNV PURPOSE SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then ARGUMENTS UPPER (input) LOGICAL = .TRUE.: the input matrices A and B are upper tri- angular. = .FALSE.: the input matrices A and B are lower tri- angular. A1 (input) REAL A2 (input) REAL A3 (input) REAL On entry, A1, A2 and A3 are entries of the input 2-by-2 upper (lower) triangular matrix A. B1 (input) REAL B2 (input) REAL B3 (input) REAL On entry, B1, B2 and B3 are entries of the input 2-by-2 upper (lower) triangular matrix B. CSU (output) REAL SNU (output) REAL The desired orthogonal matrix U. CSV (output) REAL SNV (output) REAL The desired orthogonal matrix V. CSQ (output) REAL SNQ (output) REAL The desired orthogonal matrix Q.