The following example program fits a weighted exponential model with
background to experimental data, @math{Y = A \exp(-\lambda t) + b}. The
first part of the program sets up the functions expb_f
and
expb_df
to calculate the model and its Jacobian. The appropriate
fitting function is given by,
where we have chosen @math{t_i = i}. The Jacobian matrix @math{J} is the derivative of these functions with respect to the three parameters (@math{A}, @math{\lambda}, @math{b}). It is given by,
where @math{x_0 = A}, @math{x_1 = \lambda} and @math{x_2 = b}.
#include <stdlib.h> #include <stdio.h> #include <gsl/gsl_rng.h> #include <gsl/gsl_randist.h> #include <gsl/gsl_vector.h> #include <gsl/gsl_blas.h> #include <gsl/gsl_multifit_nlin.h> struct data { size_t n; double * y; double * sigma; }; int expb_f (const gsl_vector * x, void *params, gsl_vector * f) { size_t n = ((struct data *)params)->n; double *y = ((struct data *)params)->y; double *sigma = ((struct data *) params)->sigma; double A = gsl_vector_get (x, 0); double lambda = gsl_vector_get (x, 1); double b = gsl_vector_get (x, 2); size_t i; for (i = 0; i < n; i++) { /* Model Yi = A * exp(-lambda * i) + b */ double t = i; double Yi = A * exp (-lambda * t) + b; gsl_vector_set (f, i, (Yi - y[i])/sigma[i]); } return GSL_SUCCESS; } int expb_df (const gsl_vector * x, void *params, gsl_matrix * J) { size_t n = ((struct data *)params)->n; double *sigma = ((struct data *) params)->sigma; double A = gsl_vector_get (x, 0); double lambda = gsl_vector_get (x, 1); size_t i; for (i = 0; i < n; i++) { /* Jacobian matrix J(i,j) = dfi / dxj, */ /* where fi = (Yi - yi)/sigma[i], */ /* Yi = A * exp(-lambda * i) + b */ /* and the xj are the parameters (A,lambda,b) */ double t = i; double s = sigma[i]; double e = exp(-lambda * t); gsl_matrix_set (J, i, 0, e/s); gsl_matrix_set (J, i, 1, -t * A * e/s); gsl_matrix_set (J, i, 2, 1/s); } return GSL_SUCCESS; } int expb_fdf (const gsl_vector * x, void *params, gsl_vector * f, gsl_matrix * J) { expb_f (x, params, f); expb_df (x, params, J); return GSL_SUCCESS; }
The main part of the program sets up a Levenberg-Marquardt solver and some simulated random data. The data uses the known parameters (1.0,5.0,0.1) combined with gaussian noise (standard deviation = 0.1) over a range of 40 timesteps. The initial guess for the parameters is chosen as (0.0, 1.0, 0.0).
int main (void) { const gsl_multifit_fdfsolver_type *T; gsl_multifit_fdfsolver *s; int status; size_t i, iter = 0; const size_t n = 40; const size_t p = 3; gsl_matrix *covar = gsl_matrix_alloc (p, p); double y[n], sigma[n]; struct data d = { n, y, sigma}; gsl_multifit_function_fdf f; double x_init[3] = { 1.0, 0.0, 0.0 }; gsl_vector_view x = gsl_vector_view_array (x_init, p); const gsl_rng_type * type; gsl_rng * r; gsl_rng_env_setup(); type = gsl_rng_default; r = gsl_rng_alloc (type); f.f = &expb_f; f.df = &expb_df; f.fdf = &expb_fdf; f.n = n; f.p = p; f.params = &d; /* This is the data to be fitted */ for (i = 0; i < n; i++) { double t = i; y[i] = 1.0 + 5 * exp (-0.1 * t) + gsl_ran_gaussian(r, 0.1); sigma[i] = 0.1; printf("data: %d %g %g\n", i, y[i], sigma[i]); }; T = gsl_multifit_fdfsolver_lmsder; s = gsl_multifit_fdfsolver_alloc (T, n, p); gsl_multifit_fdfsolver_set (s, &f, &x.vector); print_state (iter, s); do { iter++; status = gsl_multifit_fdfsolver_iterate (s); printf ("status = %s\n", gsl_strerror (status)); print_state (iter, s); if (status) break; status = gsl_multifit_test_delta (s->dx, s->x, 1e-4, 1e-4); } while (status == GSL_CONTINUE && iter < 500); gsl_multifit_covar (s->J, 0.0, covar); gsl_matrix_fprintf (stdout, covar, "%g"); #define FIT(i) gsl_vector_get(s->x, i) #define ERR(i) sqrt(gsl_matrix_get(covar,i,i)) printf("A = %.5f +/- %.5f\n", FIT(0), ERR(0)); printf("lambda = %.5f +/- %.5f\n", FIT(1), ERR(1)); printf("b = %.5f +/- %.5f\n", FIT(2), ERR(2)); printf ("status = %s\n", gsl_strerror (status)); gsl_multifit_fdfsolver_free (s); return 0; } int print_state (size_t iter, gsl_multifit_fdfsolver * s) { printf ("iter: %3u x = % 15.8f % 15.8f % 15.8f " "|f(x)| = %g\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), gsl_vector_get (s->x, 2), gsl_blas_dnrm2 (s->f)); }
The iteration terminates when the change in x is smaller than 0.0001, as both an absolute and relative change. Here are the results of running the program,
iter: 0 x = 1.00000000 0.00000000 0.00000000 |f(x)| = 118.574 iter: 1 x = 1.64919392 0.01780040 0.64919392 |f(x)| = 77.2068 iter: 2 x = 2.86269020 0.08032198 1.45913464 |f(x)| = 38.0579 iter: 3 x = 4.97908864 0.11510525 1.06649948 |f(x)| = 10.1548 iter: 4 x = 5.03295496 0.09912462 1.00939075 |f(x)| = 6.4982 iter: 5 x = 5.05811477 0.10055914 0.99819876 |f(x)| = 6.33121 iter: 6 x = 5.05827645 0.10051697 0.99756444 |f(x)| = 6.33119 iter: 7 x = 5.05828006 0.10051819 0.99757710 |f(x)| = 6.33119 A = 5.05828 +/- 0.05983 lambda = 0.10052 +/- 0.00309 b = 0.99758 +/- 0.03944 status = success
The approximate values of the parameters are found correctly. The errors on the parameters are given by the square roots of the diagonal elements of the covariance matrix.
@image{fit-exp,4in}