next up previous

Problem 2: Homogenized Bidomain Model

Define transmembrane potential as

\begin{displaymath}
\phi = (\phi_i - \phi_e)\mid_{\partial\Omega_m}.\nonumber
\end{displaymath}

and transmembrane current by

\begin{displaymath}
I_m = C_m{d\phi\over dt} + {1\over R_m}F_m(\phi)\nonumber
\end{displaymath}

From above, we know that

\begin{displaymath}
\phi_i = \psi_i(x) + \epsilon W_i(z)\cdot T^{-1}\nabla \psi_i(x) +
O(\epsilon^2 \psi_i)\nonumber
\end{displaymath}

and

\begin{displaymath}
\phi_e = \psi_e(x) +\epsilon W_e(z)\cdot T^{-1}\nabla \psi_e(x) +
O(\epsilon^2\psi_e)\nonumber
\end{displaymath}

and that $\psi_i(x)$ and $\psi_e(x)$ satisfy

\begin{displaymath}
\nabla \cdot(\sigma_i \nabla\psi_i)= - \nabla\cdot (\sigma_e...
...i_e) = {1\over V}\int_{\partial\Omega_m} I_m(x,z)dS_z\nonumber
\end{displaymath}

It follows that

\begin{displaymath}
\nabla \cdot(\sigma_i \nabla\psi_i)= -
\nabla\cdot (\sigma_e...
...}F_m\left(\psi + \epsilon
H(z,x)\right)dS_z \right).
\nonumber
\end{displaymath}

where

\begin{displaymath}
H(z,x) = W_i(z)\cdot T^{-1}\nabla \psi_i(x) - W_e(z)\cdot
T^{-1}\nabla \psi_e(x) \nonumber
\end{displaymath}


\begin{displaymath}
\psi = \psi_i - \psi_e.\nonumber
\end{displaymath}



next up previous