Math 2280 - Assignment 9

Dylan Zwick
Spring 2014

Section 7.1-1, 6, 20, 30, 36
Section 7.2-1, 4, 15, 20, 29
Section 7.3-3, 8, 19, 24, 30, 33

Section 7.1 - Laplace Transforms and Inverse Transforms

7.1.1 - Calculate the Laplace transform of $f(t)=t$ using the definition of the Laplace transform.
7.1.6 - Calculate the Laplace transform of $f(t)=\sin ^{2} t$ using the definition of the Laplace transform.
7.1.20 - Find the Laplace transform of the function $f(t)=t e^{t}$.
7.1.30 - Find the inverse Laplace transform of the function $F(s)=\frac{9+s}{4-s^{2}}$.
7.1.36 - Show that the function $f(t)=\sin \left(e^{t^{2}}\right)$ is of exponential order as $t \rightarrow \infty$ but that its derivative is not.

Section 7.2 - Transformation of Initial Value Problems

7.2.1 - Use Laplace transforms to solve the initial value problem below.

$$
x^{\prime \prime}+4 x=0 ; \quad x(0)=5 ; x^{\prime}(0)=0
$$

7.2.4 - Use Laplace transforms to solve the initial value problem below.

$$
x^{\prime \prime}+8 x^{\prime}+15 x=0 ; \quad x(0)=2 ; x^{\prime}(0)=-3 .
$$

7.2.15 - Use Laplace transforms to solve the initial value problem below.

$$
\begin{gathered}
x^{\prime \prime}+x^{\prime}+y^{\prime}+2 x-y=0 \\
y^{\prime \prime}+x^{\prime}+y^{\prime}+4 x-2 y=0 \\
x(0)=y(0)=1 ; \quad x^{\prime}(0)=y^{\prime}(0)=0 .
\end{gathered}
$$

More space for Problem 7.2.15 if you need it.
7.2.20 - Apply Theorem 2 from the textbook to find the inverse Laplace transform of the function

$$
F(s)=\frac{2 s+1}{s\left(s^{2}+9\right)}
$$

7.2.29 - Derive the Laplace transform given below:

$$
\mathcal{L}(t \sinh k t)=\frac{2 k s}{\left(s^{2}-k^{2}\right)^{2}}
$$

Section 7.3-Translation and Partial Fractions

7.3.3 - Apply the translation theorem to find the Laplace transform of the function

$$
f(t)=e^{-2 t} \sin 3 \pi t
$$

7.3.8 - Apply the translation theorem to find the inverse Laplace transform of the function

$$
F(s)=\frac{s+2}{s^{2}+4 s+5} .
$$

7.3.19 - Use partial fractions to find the inverse Laplace transform of the function

$$
F(s)=\frac{s^{2}-2 s}{s^{4}+5 s^{2}+4}
$$

7.3.24 - Use the factorization

$$
s^{4}+4 a^{4}=\left(s^{2}-2 a s+2 a^{2}\right)\left(s^{2}+2 a s+2 a^{2}\right)
$$

to derive the inverse Laplace transform

$$
\mathcal{L}^{-1}\left\{\frac{s}{s^{4}+4 a^{4}}\right\}=\frac{1}{2 a^{2}} \sinh \text { at } \sin a t .
$$

More room for Problem 7.3.24 in case you need it.
7.3.30 - Use Laplace transforms to solve the initial value problem

$$
x^{\prime \prime}+4 x^{\prime}+8 x=e^{-t} \quad x(0)=x^{\prime}(0)=0 .
$$

7.3.33 - Use Laplace transforms to solve the initial value problem

$$
x^{(4)}+x=0 \quad x(0)=x^{\prime}(0)=x^{\prime \prime}(0)=0, x^{(3)}(0)=1 .
$$

More room for Problem 7.3.33 in case you need it.

