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Section 2.3 - Acceleration-Velocity Models

2.3.1 The acceleration of a Maserati is proportional to the difference be-
tween 250 km/h and the velocity of this sports car. If the machine
can accelerate from rest to 100 km/h in 10s, how long will it take for
the car to accelerate from rest to 200 km/h?

Solution - The differential equation governing the car’s movement
will be:

dv

dt
= k(250 − v).

This is a separable differential equation. We can rewrite it as:

dv

250 − v
= kdt.

Integrating both sides of this equation we get:

∫

dv

250 − v
=

∫

kdt.

⇒ − ln (250 − v) = kt + C

⇒ 250 − v = Ce−kt

⇒ v(t) = 250 − Ce−kt.

Using the initial condition v(0) = 0 = 250−C we get C = 250. Using
the given v(10) = 100 we get:
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v(10) = 250(1 − e−10k) = 100

⇒ 1 − e−10k =
2

5

⇒ ln(e−10k) = ln

(

3

5

)

⇒ k =
ln 5 − ln 3

10
≈ .05108.

Using this value of k we want to find the value of t for which v(t) =
200. We do this by solving:

200 = 250(1 − e−.05108t∗)

⇒
4

5
= 1 − e−.05108t∗

⇒ e−.05108t∗ =
1

5

⇒ t∗ =
ln 5

.05108
≈ 31.5 seconds.
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2.3.2 Suppose that a body moves through a resisting medium with resis-
tance proportional to its velocity v, so that dv/dt = −kv.

(a) Show that its velocity and position at time t are given by

v(t) = v0e
−kt

and

x(t) = x0 +
(v0

k

)

(1 − e−kt).

(b) Conclude that the body travels only a finite distance, and find
that distance.

Solution

(a) - The differential equation

dv

dt
= −kv

is separable, and can be rewritten as

dv

v
= −kdt.

If we integrate both sides of the above differential equation we
get:

ln v = −kt + C

⇒ v(t) = Ce−kt.

Using the initial value v(0) = v0 = C we get:

v(t) = v0e
−kt.
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Integrating this function to get the position function gives us:

x(t) = −
v0

k
e−kt + C∗.

Using x(0) = x0 = −
v0

k
+ C∗ we get C∗ = x0 +

v0

k
. This gives us:

x(t) = x0 +
v0

k
−

v0

k
e−kt = x0 +

(v0

k

)

(1 − e−kt).

(b) - If we take the limit of our position function as t → ∞ we get:

lim
t→∞

x(t) = x0 +
v0

k
(1 − e−k∞) = x0 +

v0

k
.
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2.3.4 Consider a body that moves horizontally through a medium whose
resistance is proportional to the square of the velocity v, so that

dv/dt = −kv2.

Show that

v(t) =
v0

1 + v0kt

and that

x(t) = x0 +
1

k
ln (1 + v0kt).

Note that, in contrast with the result of Problem 2, x(t) → ∞ as
t → ∞. Which offers less resistance when the body is moving fairly
slowly - the medium in this problem or the one in Problem 2? Does
your answer seem to be consistent with the observed behaviors of
x(t) as t → ∞?

Solution - The differential equation

dv

dt
= −kv2

is separable. We can rewrite it as:

dv

v2
= −kdt.

Integrating both sides of this equation gives us:
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−
1

v
= −kt + C.

Solving for v(t) gives us:

v(t) =
1

kt + C
.

Using the initial condition v(0) = v0 =
1

C
we have C =

1

v0

. Plugging

this into our velocity equation gives us:

v(t) =
1

kt + 1
v0

=
v0

1 + v0kt
.

Integrating this we get:

x(t) =

∫

v0

1 + v0kt
dt =

v0

kv0

ln (1 + v0kt) + C = C +
1

k
ln (1 + v0kt).

Our initial condition x(0) = x0 = C gives us:

x(t) = x0 +
1

k
ln (1 + v0kt).

Indeed lim
t→∞

x(t) = ∞.

For |v| < 1 we have v2 < |v| and so the drag is smaller for fairly small
values of v. This is why the distance can go forever and is not finite.
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2.3.10 A woman bails out of an airplane at an altitude of 10,000 ft, falls
freely for 20s, then opens her parachute. How long will it take her
to reach the ground? Assume linear air resistance ρv ft/s2, taking
ρ = .15 without the parachute and ρ = 1.5 with the parachute. (Sug-
gestion: First determine her height above the ground and velocity
when the parachute opens.)

Solution - We have:

v(t) =

(

v0 +
g

ρ

)

e−ρt −
g

ρ
.

If we integrate this to find x(t) we get:

x(t) = −
g

ρ
t −

1

ρ

(

v0 +
g

ρ

)

e−ρt + C.

Plugging in the initial condition x(0) = x0 we get:

C = x0 +
1

ρ

(

v0 +
g

ρ

)

= x0 +
1

ρ
(v0 − vτ ).

Using this value for C after a little algebra our equation for x(t) be-
comes:

x(t) = x0 + vτ t +
1

ρ
(v0 − vτ )(1 − e−ρt).

Now, the initial distance is x0 = 10, 000 ft, the initial velocity is v0 = 0

ft/s, the terminal velocity is vτ = −
32.2

.15
ft/s, and ρ = .15/s. The

total distance traveled in the first 20 seconds is:1

1Leaving out units on the intermediate steps. Trust me, they work out.
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x(20) = 10, 000 −

(

32.2

.15

)

(20) =
1

.15

(

0 +
32.2

.15

)

(1 − e−.15(20))

≈ 7, 067ft.

The velocity of the skydiver after 20 seconds is:

v(20) =

(

0 +
32.2

.15

)

e−.15(20) −
32.2

.15
≈ 204 ft/s.

Now, to find the total time for the rest of the trip down we want to
solve for tf in the equation:

0 = 7, 067 −

(

32.2

1.5

)

tf +

(

1

1.5

) (

−204 +
32.2

1.5

)

(1 − e−1.5tf ).

Using a calculator to find this we get:

tf ≈ 340 seconds.

So, the total skydive time is about 340s + 20s = 360s, or about 6
minutes.
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2.3.24 The mass of the sun is 329,320 times that of the earth and its radius
is 109 times the radius of the earth.

(a) To what radius (in meters) would the earth have to be compressed
in order for it to become a black hole - the escape velocity from
its surface equal to the velocity c = 3 × 108m/s of light?

(b) Repeat part (a) with the sun in place of the earth.

Solution -

(a) - We have 3 × 108m

s
=

√

2GMe

R
.

Solving this for R we get:

R =
2GMe

c2
=

2
(

6.67 × 10−11 Nm2

kg2

)

(5.972 × 1024kg)
(

3 × 108 m
s

)2

= .00885m = .885cm.

WOW!

(b) - Using the same equation we get:

R =
2GMs

c2
=

2GMe

c2
(329, 320) ≈ 2, 915m = 2.915km.
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Section 2.4 - Numerical Approximation: Euler’s

Method

2.4.1 Apply Euler’s method twice to approximate the solution to the initial
value problem below on the interval [0, 1

2
], first with step size h = .25,

then with step size h = 0.1. Compare the three-decimal-place values
of the two approximations at x = 1

2
with the value y(1

2
) of the actual

solution, also given below.

y′ = −y,

y(0) = 2;

y(x) = 2e−x.

Solution - If we apply Euler’s method with a step size of h = .25 we
get:

y0 = 2 x0 = 0,

y1 = y0 + h ∗ f(x0, y0) = 2 + (.25)(−2) =
3

2
x1 = .25,

y2 = y1 + h ∗ f(x1, y1) =
3

2
+ (.25)

(

−
3

2

)

=
9

8
x2 = .5.

If we apply Euler’s method with a step size of h = .1 we get:

y0 = 2 x0 = 0,

y1 = 2 + (.1)(−2) = 1.8 x1 = .1,

y2 = 1.8 + (.1)(−1.8) = 1.62 x2 = .2,

y3 = 1.62 + (.1)(1.62) = 1.458 x3 = .3,

11



y4 = 1.458 + (.1)(−1.458) = 1.3122 x4 = .4,

y5 = 1.3122 + (.1)(−1.3122) = 1.18098 x5 = .5.

The exact value is y(.5) = 2e−.5 = 1.213. So, with h = .25 our estimate
is off by .088, and with h = .1 our estimate is off by .032. So, h = .1
gives a better estimate, which is what we’d expect.
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2.4.5 Apply Euler’s method twice to approximate the solution to the initial
value problem below on the interval [0, 1

2
], first with step size h = .25,

then with step size h = 0.1. Compare the three-decimal-place values
of the two approximations at x = 1

2
with the value y(1

2
) of the actual

solution, also given below.

y′ = y − x − 1,

y(0) = 1;

y(x) = 2 + x − ex.

Solution - If we apply Euler’s method with a step size of h = .25 we
get:

y0 = 1 x0 = 0,

y1 = y0 + h ∗ f(x0, y0) = 1 + (.25)(1 − 0 − 1) = 1
x1 = .25,

y2 = y1 + h ∗ f(x1, y1) = 1 + (.25)(1 − .25 − 1) =
15

16
x2 = .5.

If we apply Euler’s method with a step size of h = .1 we get:

y0 = 1 x0 = 0,

y1 = 2 + (.1)(1 − 0 − 1) = 1 x1 = .1,

y2 = 1 + (.1)(1 − .1 − 1) = .99 x2 = .2,

y3 = .99 + (.1)(.99 − .2 − 1) = .969 x3 = .3,

y4 = .969 + (.1)(.969 − .3 − 1) = .9359 x4 = .4,

y5 = .9359 + (.1)(.9359 − .4 − 1) = .88949 x5 = .5.
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The exact value is y(.5) = 2 + .5 − e.5 = .851. So, with h = .25 our
estimate is off by .087, and with h = .1 our estimate is off by .038.
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2.4.9 Apply Euler’s method twice to approximate the solution to the initial
value problem below on the interval [0, 1

2
], first with step size h = .25,

then with step size h = 0.1. Compare the three-decimal-place values
of the two approximations at x = 1

2
with the value y(1

2
) of the actual

solution, also given below.

y′ =
1

4
(1 + y2),

y(0) = 1;

y(x) = tan (
1

4
(x + π)).

Solution - If we apply Euler’s method with a step size of h = .25 we
get:

y0 = 1 x0 = 0,

y1 = y0 + h ∗ f(x0, y0) = 1 + (.25)(.25(1 + 12)) =
9

8
x1 = .25,

y2 = y1 + h ∗ f(x1, y1) =
9

8
+ (.25)(.25(1 + (

9

8
)2)) = 1.27

x2 = .5.

If we apply Euler’s method with a step size of h = .1 we get:

y0 = 1 x0 = 0,

y1 = 1 + (.1)(.25(1 + 12)) = 1.05 x1 = .1,

y2 = 1.05 + (.1)(.25(1 + 1.052)) = 1.10 x2 = .2,

y3 = 1.10 + (.1)(.25(1 + 1.102)) = 1.158 x3 = .3,
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y4 = 1.158 + (.1)(.25(1 + 1.1582)) = 1.217 x4 = .4,

y5 = 1.217 + (.1)(.25(1 + 1.2172)) = 1.279 x5 = .5.

The exact value is y(.5) = tan

(

1

4
(.5 + π)

)

= 1.287. So, with h = .25

our estimate is off by .017, and with h = .1 our estimate is off by .008.
Pretty close!
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2.4.26 Suppose the deer population P (t) in a small forest initially numbers
25 and satisfies the logistic equation

dP

dt
= 0.0225P − 0.0003P 2

(with t in months.) Use Euler’s method with a programmable calcu-
lator or computer to approximate the solution for 10 years, first with
step size h = 1 and then with h = .5, rounding off approximate P -
values to integrals numbers of deer. What percentage of the limiting
population of 75 deer has been attained after 5 years? After 10 years?

Solution - With h = 1 month we get the values:

t P Rounded P
0 25 25
1 Month 25.375 25
2 Months 25.753 26
...

...
...

1 year 29.667 30
...

...
...

5 years 49.389 49
...

...
...

10 years 66.180 66
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With h = .5 month we get the values:

t P Rounded P
0 25 25
1 Month 25.376 25
2 Months 25.755 26
...

...
...

1 year 29.675 30
...

...
...

5 years 49.390 49
...

...
...

10 years 66.235 66

The percentage change after 5 years is 66%. The percentage change
after 10 years is 88%. Note that h = 1 and h = .5 are almost identical.
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2.4.30 Apply Euler’s method with successively smaller step sizes on the
interval [0, 2] to verify empirically that the solution of the initial value
problem

dy

dx
= y2 + x2, y(0) = 0

has vertical asymptote near x = 2.003147.

Solution - The estimates for successively smaller step sizes are:

x-value y-values
h = .5 h = .1 h = .01 h = .001

.5 0 .030 .041 .042
1 .125 .401 .344 .350
1.5 .633 1.213 1.479 1.518
2 1.958 5.842 28.393 142.627

We see as h gets small when we approach x = 2 we get very large
y-values. This is caused by the asymptote. Note: I had to write a
Java program to do this.
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Section 3.1 - Second-Order Linear Equations

3.1.1 Verify that the functions y1 and y2 given below are solutions to the
second-order ODE also given below. Then, find a particular solution
of the form y = c1y1 + c2y2 that satisfies the given initial conditions.
Primes denote derivatives with respect to x.

y′′ − y = 0;

y1 = ex y2 = e−x;

y(0) = 0 y′(0) = 5.

Solution - We first verify that the two functions we’re given are, in
fact, solutions to the ODE. For the first function we have:

y1 = ex,

y′

1 = ex,

y′′

1 = ex.

Plugging these into the ODE we get:

y′′

1 − y1 = ex − ex = 0.

So, it checks out. As for the second function we have:

y2 = e−x,

y′

2 = −e−x,

y′′

2 = e−x.
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Plugging these into the ODE we get:

y′′

2 − y2 = e−x − e−x = 0.

So, it checks out too. Combining these functions we have:

y(x) = c1y1(x) + c2y2(x) = c1e
x + e2e

−x,

y′(x) = c1y
′

1(x) + c2y
′

2(x) = c1e
x − c2e

−x.

Using our initial conditions we have:

y(0) = 0 = c1 + c2,

y′(0) = 5 = c1 − c2.

Solving these for c1 and c2 we get c1 =
5

2
, and c2 = −

5

2
. So, the

solution to the initial value problem is:

y(x) =
5

2
ex −

5

2
e−x.
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3.1.16 Verify that the functions y1 and y2 given below are solutions to the
second-order ODE also given below. Then, find a particular solution
of the form y = c1y1 + c2y2 that satisfies the given initial conditions.
Primes denote derivatives with respect to x.

x2y′′ + xy′ + y = 0;

y1 = cos (ln x), y2 = sin (lnx);

y(1) = 2, y′(1) = 3.

Solution - We first need to verify that the given functions are, in fact,
solutions to the ODE. For our first function we have:

y1 = cos (ln x),

y′

1 = −
1

x
sin (lnx),

y′′

1 =
1

x2
sin (ln x) −

1

x2
cos (ln x).

Plugging these into our ODE we get:

x2y′′

1 + xy′

1 + y = sin (lnx) − cos (ln x) − sin (ln x) + cos (lnx) = 0.

So, y1 checks out. As for y2 we have:

y2 = sin (ln x),

y′

2 =
1

x
cos (ln x),

y′′

2 = −
1

x2
cos (ln x) −

1

x2
sin (ln x).

22



Plugging these into our ODE we get:

x2y′′

2 + xy′

2 + y2 = − cos (ln x) − sin (ln x) + cos (ln x) + sin (ln x) = 0.

So, y2 checks out as well. Our general solution will be of the form:

y(x) = c1 cos (ln x) + c2 sin (ln x),

and so

y′(x) = −
c1

x
sin (ln x) +

c2

x
cos (ln x).

If we plug in the initial conditions we get:

y(1) = c1 = 2,

y′(1) = c2 = 3.

So, the solution to our initial value problem is:

y(x) = 2 cos (ln x) + 3 sin (ln x).
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3.1.18 Show that y = x3 is a solution of yy′′ = 6x4, but that if c2 6= 1, then
y = cx3 is not a solution.

Solution - We first check that y = x3 is indeed a solution. It’s deriva-
tive is y′ = 3x2, and its second derivative is y′′ = 6x, so

yy′′ = x3(6x) = 6x4.

So, it checks out. Now, suppose y = cx3. Then its first and second
derivatives are y′ = 3cx2 and y′′ = 6cx, and therefore

yy′′ = 6c2x4.

This is only a solution if c2 = 1, so c = ±1.

24



3.1.24 Determine if the functions

f(x) = sin2 x, g(x) = 1 − cos (2x)

are linearly dependent on the real line R.

Solution - If we use the trig identity

sin2 x =
1 − cos (2x)

2

we see 2f(x) = g(x). So, f(x) and g(x) are linearly dependent.
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3.1.30 (a) Show that y1 = x3 and y2 = |x3| are linearly independent solu-
tions on the real line of the equation x2y′′ − 3xy′ + 3y = 0.

(b) Verify that W (y1, y2) is identically zero. Why do these facts not
contradict Theorem 3 from the textbook?

Solution-

(a) - We first note that y = x3 satisfies the ODE:

x2(6x) − 3x(3x2) + 3x3 = 0.

And y = −x3 does as well:

x2(−6x) − 3x(−3x2) + 3(−x3) = 0.

As |x3| has continuous first and second derivatives on the real
line we note that the above calculations imply |x3| satisfies the
ODE on the entire real line as well.

If x < 0 then y1 = x3 and y2 = −x3, while if x > 0 we have
y1 = x3 and y2 = x3. So, there is no constant c such that y1 =
cy2 on the entire real line, and therefore y1 and y2 are linearly
independent on the real line.

(b) - The Wronskian of these two functions is:

W (y1, y2) =

∣

∣

∣

∣

x3 |x3|
3x2 3x|x|

∣

∣

∣

∣

= 3x4|x| − 3x4|x| = 0.

This does not contradict theorem 3 as

y′′ −
3

x
y′ +

3

x2
y = 0

has −
3

x
,

3

x2
as coefficient functions, which are discontinuous

(undefined!) at x = 0.
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