Math 2280 - Assignment 13

Dylan Zwick

Spring 2014

Section 9.1-1, 8, 11, 13, 21
Section 9.2-1, 9, 15, 17, 20
Section 9.3-1,5, 8, 13, 20

Section 9.1 - Periodic Functions and Trigonometric Series

9.1.1 - Sketch the graph of the function f defined for all t by the given formula, and determine whether it is periodic. If so, find its smallest period.

$$
f(t)=\sin 3 t
$$

Solution -

Periodic with period $\frac{2 \pi}{3}$.
9.1.8 - Sketch the graph of the function f defined for all t by the given formula, and determine whether it is periodic. If so, find its smallest period.

$$
f(t)=\sinh \pi t
$$

Solution -

Not periodic.

9.1.11 - The value of a period 2π function $f(t)$ in one full period is given below. Sketch several periods of its graph and find its Fourier series.

$$
f(t)=1, \quad-\pi \leq t \leq \pi
$$

Just the constant function 1. The Fourier series for this will be just 1, but let's formally calculate it anyways.

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} d t=\frac{1}{\pi}(\pi-(-\pi))=2 .
$$

For $n \geq 1$:

$$
\begin{gathered}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos (n t) d t=\left.\frac{1}{n \pi} \sin (n t)\right|_{-\pi} ^{\pi}=0-0=0 . \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \sin (n t) d t=\left.\frac{-1}{n \pi} \cos (n t)\right|_{-\pi} ^{\pi}=-\frac{1}{n \pi}(\cos (n \pi)-\cos (n \pi))=
\end{gathered}
$$

So, the Fourier series for 1 is:

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t)+\sum_{n=1}^{\infty} b_{n} \sin (n t)=\frac{2}{2}=1
$$

Wow!
9.1.13 - The value of a period 2π function $f(t)$ in one full period is given below. Sketch several periods of its graph and find its Fourier series.

$$
f(t)=\left\{\begin{array}{cc}
0 & -\pi<t \leq 0 \\
1 & 0<t \leq \pi
\end{array}\right.
$$

Solution -

The Fourier coefficients are:

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) d t=\frac{1}{\pi} \int_{0}^{\pi} d t=\frac{1}{\pi}(\pi-0)=1 .
$$

For $n \geq 1$:

$$
\begin{gathered}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (n t) d t=\frac{1}{\pi} \int_{0}^{\pi} \cos (n t) d t=\left.\frac{1}{n \pi} \sin (n t)\right|_{0} ^{\pi}= \\
0-0=0 \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (n t) d t=\frac{1}{\pi} \int_{0}^{\pi} \sin (n t) d t=\left.\frac{-1}{n \pi} \cos (n t)\right|_{0} ^{\pi}= \\
\quad-\frac{1}{n \pi}(\cos (n \pi)-1)=\left\{\begin{array}{cc}
\frac{2}{n \pi} & n \text { odd } \\
0 & n \text { even }
\end{array}\right.
\end{gathered}
$$

So, the Fourier series is:

$$
\frac{1}{2}+\frac{2}{\pi}\left(\sin (t)+\frac{1}{3} \sin (3 t)+\frac{1}{5} \sin (5 t)+\cdots\right)
$$

9.1.21 - The value of a period 2π function $f(t)$ in one full period is given below. Sketch several periods of its graph and find its Fourier series.

$$
f(t)=t^{2}, \quad-\pi \leq t<\pi
$$

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} t^{2} d t=\frac{2}{\pi} \int_{0}^{\pi} t^{2} d t=\left.\frac{2}{3 \pi} t^{3}\right|_{0} ^{\pi}=\frac{2 \pi^{2}}{3}
$$

For $n \geq 1$:

$$
\begin{gathered}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} t^{2} \cos (n t) d t= \\
\left.\frac{2}{\pi}\left(\frac{t^{2} \sin (n t)}{n}+\frac{2 t \cos (n t)}{n^{2}}-\frac{2 \sin (n t)}{n^{3}}\right)\right|_{0} ^{\pi}=\frac{2}{\pi}\left(\frac{2 \pi \cos (n \pi)}{n^{2}}\right)= \\
\frac{4(-1)^{n}}{n^{2}} . \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} t^{2} \sin (n t) d t=0 \quad \text { (Odd function.) }
\end{gathered}
$$

So, the Fourier series is:

$$
\frac{\pi^{2}}{3}-4\left(\cos (t)-\frac{\cos (2 n)}{4}+\frac{\cos (3 t)}{9}-\frac{\cos (4 t)}{16}+\cdots\right) .
$$

Section 9.2 - General Fourier Series and Convergence

9.2.1 - The values of a periodic function $f(t)$ in one full period are given below; at each discontinuity the value of $f(t)$ is that given by the average value condition. Sketch the graph of f and find its Fourier series.

$$
f(t)=\left\{\begin{array}{cc}
-2 & -3<t<0 \\
2 & 0<t<3
\end{array}\right.
$$

The function $f(t)$ is odd, so all the cosine terms will be 0 . The sine terms are:

$$
\begin{gathered}
b_{n}=\frac{1}{3} \int_{-3}^{3} f(t) \sin \left(\frac{n \pi t}{3}\right) d t=\frac{2}{3} \int_{0}^{3} 2 \sin \left(\frac{n \pi t}{3}\right) d t \\
=\frac{4}{3} \int_{0}^{3} \sin \left(\frac{n \pi t}{3}\right) d t=\frac{4}{n \pi}(-\cos (n \pi)-(-1))=\left\{\begin{array}{cc}
\frac{8}{n \pi} & n \text { odd } \\
0 & n \text { even }
\end{array} .\right.
\end{gathered}
$$

The Fourier series for $f(t)$ is:

$$
\frac{8}{\pi}\left(\sin \left(\frac{\pi t}{3}\right)+\frac{1}{3} \sin \left(\frac{3 \pi t}{3}\right)+\frac{1}{5} \sin \left(\frac{5 \pi t}{3}\right)+\cdots\right)
$$

9.2.9 - The values of a periodic function $f(t)$ in one full period are given below; at each discontinuity the value of $f(t)$ is that given by the average value condition. Sketch the graph of f and find its Fourier series.

$$
f(t)=t^{2}, \quad-1<t<1
$$

Solution -

The function $f(t)$ is even, so all the sine terms in its Fourier series are zero. As for the cosine terms we have:

$$
\begin{gathered}
a_{0}=\int_{-1}^{1} t^{2} d t=\left.\frac{t^{3}}{3}\right|_{-1} ^{1}=\frac{1}{3}-\left(-\frac{1}{3}\right)=\frac{2}{3} \\
a_{n}=\int_{-1}^{1} t^{2} \cos (n \pi t) d t=2 \int_{0}^{1} t^{2} \cos (n \pi t) d t \\
=\left.2\left(\frac{t^{2} \sin (n \pi t)}{n \pi}+\frac{2 t \cos (n \pi t)}{n^{2} \pi^{2}}-\frac{2 \sin (n \pi t)}{n^{3} \pi^{3}}\right)\right|_{0} ^{1}=\frac{4}{n^{2} \pi^{2}} \cos (n \pi) \\
=\frac{4(-1)^{n}}{n^{2} \pi^{2}}
\end{gathered}
$$

So, the Fourier series for the function $f(t)$ is:

$$
\frac{1}{3}-\frac{4}{\pi^{2}}\left(\cos (\pi t)-\frac{\cos (2 \pi t)}{4}+\frac{\cos (3 \pi t)}{9}-\cdots\right)
$$

(a) - Suppose that f is a function of period 2π with $f(t)=t^{2}$ for $0<t<2 \pi$. Show that

$$
f(t)=\frac{4 \pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{\cos n t}{n^{2}}-4 \pi \sum_{n=1}^{\infty} \frac{\sin n t}{n}
$$

and sketch the graph of f, indicating the value at each discontinuity.
(b) - Deduce the series summations

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

and

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=\frac{\pi^{2}}{12}
$$

from the Fourier series in part (a).

Solution -

(a) - Sketch of the graph:

The Fourier coefficients are:

$$
\begin{gathered}
a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} t^{2} d t=\left.\frac{1}{\pi}\left(\frac{t^{3}}{3}\right)\right|_{0} ^{2 \pi}=\frac{8 \pi^{2}}{3} \\
a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} t^{2} \cos (n t) d t= \\
\left.\frac{1}{\pi}\left(\frac{t^{2} \sin (n t)}{n}+\frac{2 t \cos (n t)}{n^{2}}-\frac{2 \sin (n t)}{n^{3}}\right)\right|_{0} ^{2 \pi} \\
=\frac{9 \pi \cos (2 n \pi)}{\pi n^{2}}=\frac{4}{n^{2}} \\
\frac{1}{\pi}\left(-\frac{t^{2} \cos (n t)}{n}-\frac{1}{\pi} \int_{0}^{2 \pi} t^{2} \sin (n t) d t=\right. \\
\left.=-\frac{4 \pi \sin (n t)}{n^{2}}+\frac{2 \sin (n t)}{n^{3}}\right)\left.\right|_{0} ^{2 \pi} \\
n
\end{gathered} x_{0}^{2 \pi} . \frac{4 \pi}{n} . l
$$

So, the Fourier series for the function $f(t)$ is:

$$
\begin{aligned}
& \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t)+\sum_{n=1}^{\infty} b_{n} \sin (n t) \\
= & \frac{4 \pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{\cos (n t)}{n^{2}}-4 \pi \sum_{n=1}^{\infty} \frac{\sin (n t)}{n} .
\end{aligned}
$$

(b) - The averaged value of our function at $t=0$ is $\frac{4 \pi^{2}+0}{2}=2 \pi^{2}$. So,

$$
\begin{aligned}
2 \pi^{2} & =\frac{4 \pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
& \Rightarrow \frac{\pi^{2}}{6}=\sum_{n=1}^{\infty} \frac{1}{n^{2}} .
\end{aligned}
$$

At $t=\pi$ we get:

$$
\begin{aligned}
\pi^{2} & =\frac{4 \pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \\
& \Rightarrow-\frac{\pi^{2}}{3}=4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \\
& \Rightarrow-\frac{\pi^{2}}{12}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \\
\Rightarrow & \frac{\pi^{2}}{12}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}
\end{aligned}
$$

9.2.17 -

(a) - Supose that f is a funciton of period 2 with $f(t)=t$ for $0<t<$ 2. Show that

$$
f(t)=1-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin n \pi t}{n}
$$

and sketch the graph of f, indicating the value at each discontinuity.
(b) - Substitute an appropriate value of t to deduce Leibniz's series

$$
1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4} .
$$

Solution - Sketch of the graph:
(a) -

The Fourier coefficients will be:

$$
\begin{gathered}
a_{0}=\int_{0}^{2} t d t=\left.\frac{t^{2}}{2}\right|_{0} ^{2}=2 . \\
a_{n}=\int_{0}^{2} t \cos (n \pi t)=\frac{t \sin (n \pi t)}{n \pi}-\left.\frac{\cos (n \pi t)}{n^{2} \pi^{2}}\right|_{0} ^{2} \\
=\left(\frac{2 \sin (2 n \pi)}{n \pi}-\frac{\cos (2 n \pi)}{n^{2} \pi^{2}}\right)-\left(0+\frac{1}{n^{2} \pi^{2}}\right)=-\frac{1}{n^{2} \pi^{2}}+\frac{1}{n^{2} \pi^{2}}=0 . \\
b_{n}=\int_{0}^{2} t \sin (n \pi t) d t=-\left.\left(\frac{t \cos (n \pi t)}{n \pi}+\frac{\sin (n \pi t)}{n^{2} \pi^{2}}\right)\right|_{0} ^{2}=-\frac{2}{n \pi} .
\end{gathered}
$$

So, the Fourier series for $f(t)$ is:

$$
\begin{gathered}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t)+\sum_{n=1}^{\infty} b_{n} \sin (n t) \\
=1-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin (n \pi t)}{n}
\end{gathered}
$$

(b) - If we plug in $t=\frac{1}{2}$ we get:

$$
\begin{gathered}
\frac{1}{2}=1-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left(\frac{n \pi}{2}\right)}{n} \\
\Rightarrow \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin \left(\frac{n \pi}{2}\right)}{n}=\frac{1}{2} \\
\Rightarrow \frac{\pi}{4}=\sum_{n=1}^{\infty} \frac{\sin \left(\frac{n \pi}{2}\right)}{n}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots .
\end{gathered}
$$

9.2.20 - Derive the Fourier series given below, and graph the period 2π function to which the series converges.

$$
\sum_{n=1}^{\infty} \frac{\cos n t}{n^{2}}=\frac{3 t^{2}-6 \pi t+2 \pi^{2}}{12} \quad(0<t<2 \pi)
$$

Solution - If we take the even extension of $f(t)=\frac{3 t^{2}-6 \pi t+2 \pi^{2}}{12}$ we must have $b_{n}=0$ for all n, and

$$
\begin{gathered}
a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi}\left(\frac{3 t^{2}-6 \pi t+2 \pi^{2}}{12}\right) d t=\left.\frac{1}{\pi}\left(\frac{t^{3}-3 \pi t^{2}+2 \pi^{2} t}{12}\right)\right|_{0} ^{2 \pi} \\
=\frac{1}{\pi}\left(\frac{8 \pi^{2}-12 \pi^{2}+4 \pi^{2}}{12}\right)=0
\end{gathered}
$$

As for the a_{n} terms, these are (after a nasty integral, which you can do using Mathematica)

$$
a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi}\left(\frac{3 t^{2}-6 \pi t+2 \pi^{2}}{12}\right) \cos (n t) d t=\frac{1}{n^{2}}
$$

So, the Fourier series for the even extension is:

$$
\sum_{n=1}^{\infty} \frac{\cos (n t)}{n^{2}}
$$

Graph:

Section 9.3 - Fourier Sine and Cosine Series

9.3.1 - For the given function $f(t)$ defined on the given interval find the Fourier cosine and sine series of f and sketch the graphs of the two extensions of f to which these two series converge.

$$
f(t)=1, \quad 0<t<\pi
$$

Solution - Even extension

Cosine series:

$$
\begin{gathered}
a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} d t=2 \\
a_{n}=0 . \quad(\text { See problem 9.1.11) }
\end{gathered}
$$

So, the cosine series is:

$$
\frac{a_{0}}{2}=1
$$

Wow!

Odd extension:

The sine series has coefficients:

$$
\begin{gathered}
\frac{2}{\pi} \int_{0}^{\pi} \sin (n t) d t=-\left.\frac{2}{n \pi} \cos (n t)\right|_{0} ^{\pi} \\
=\left\{\begin{array}{cc}
\frac{4}{n \pi} & n \text { odd } \\
0 & n \text { even }
\end{array}\right.
\end{gathered}
$$

So, the sine series is:

$$
\frac{4}{\pi}\left(\sin (t)+\frac{1}{3} \sin (3 t)+\frac{1}{5} \sin (5 t)+\cdots\right)
$$

9.3.5 - For the given function $f(t)$ defined on the given interval find the Fourier cosine and sine series of f and sketch the graphs of the two extensions of f to which these two series converge.

$$
f(t)= \begin{cases}0 & 0<t<1 \\ 1 & 1<t<2 \\ 0 & 2<t<3\end{cases}
$$

Solution - Even extension:

The cosine series will have the coefficients:

$$
\begin{gathered}
a_{0}=\frac{2}{3} \int_{0}^{3} f(t) d t=\frac{2}{3} \int_{1}^{2} d t=\frac{2}{3} . \\
a_{n}=\frac{2}{3} \int_{0}^{3} f(t) \cos \left(\frac{n \pi t}{3}\right) d t=\frac{2}{3} \int_{1}^{2} \cos \left(\frac{n \pi t}{3}\right) \\
=\left.\frac{2}{n \pi} \sin \left(\frac{n \pi t}{3}\right)\right|_{1} ^{2}=\frac{2}{n \pi}\left(\sin \left(\frac{2 n \pi}{3}\right)-\sin \left(\frac{2 n \pi}{3}\right)\right) \\
=\left\{\begin{array}{cc}
0 & n=6 k, 6 k+1,6 k+3,6 k+5 \\
-\frac{2 \sqrt{3}}{n \pi} & n=6 k+2 \\
\frac{2 \sqrt{3}}{n \pi} & n=6 k+4
\end{array}\right.
\end{gathered}
$$

So, the cosine series is:

$$
\frac{1}{3}-\frac{2 \sqrt{3}}{\pi}\left(\frac{1}{2} \cos \left(\frac{2 \pi t}{3}\right)-\frac{1}{4} \cos \left(\frac{4 \pi t}{3}\right)+\frac{1}{8} \cos \left(\frac{8 \pi t}{3}\right)-\cdots\right)
$$

The odd extension is:

The sine series will have coefficients

$$
\begin{gathered}
b_{n}=\frac{2}{3} \int_{0}^{3} f(t) \sin \left(\frac{n \pi t}{3}\right) d t=\frac{2}{3} \int_{1}^{2} \sin \left(\frac{n \pi t}{3}\right) d t \\
=-\left.\frac{2}{n \pi} \cos \left(\frac{n \pi t}{3}\right)\right|_{1} ^{2}=-\frac{2}{n \pi}\left(\cos \left(\frac{2 n \pi}{3}\right)-\cos \left(\frac{n \pi}{3}\right)\right) \\
=\left\{\begin{array}{cc}
\frac{2}{2 \pi} & n=6 k, 6 k+2,6 k+4 \\
\frac{2}{n \pi} & n=6 k+1,6 k+5 \\
-\frac{4}{n \pi} & n=6 k+3
\end{array}\right.
\end{gathered}
$$

The sine series is:

$$
\frac{2}{\pi}\left(\sin \left(\frac{\pi t}{3}\right)-\frac{2}{3} \sin \left(\frac{3 \pi t}{3}\right)+\frac{1}{5} \sin \left(\frac{5 \pi t}{3}\right)+\cdots\right)
$$

9.3.8 - For the given function $f(t)$ defined on the given interval find the Fourier cosine and sine series of f and sketch the graphs of the two extensions of f to which these two series converge.

$$
f(t)=t-t^{2}, \quad 0<t<1
$$

Solution - The even extension is:

The cosine series has the coefficients:

$$
\begin{gathered}
a_{0}=2 \int_{0}^{1}\left(t-t^{2}\right) d t=\left.2\left(\frac{t^{2}}{2}-\frac{t^{3}}{3}\right)\right|_{0} ^{1}=\frac{1}{3} \\
a_{n}=2 \int_{0}^{1}\left(t-t^{2}\right) \cos (n \pi t) d t=\left\{\begin{array}{cc}
-\frac{4}{n^{2} \pi^{2}} & n \text { even } \\
0 & n \text { odd }
\end{array}\right.
\end{gathered}
$$

The integral above can be evaluated with a good graphing calculator, a computer, Wolfram alpha, integrals.com, or by hand with a couple integrations by parts. I just cut to the chase. The corresponding Fourier cosine series will be:

$$
\frac{1}{6}-\frac{4}{\pi^{2}}\left(\frac{\cos (2 \pi t)}{4}+\frac{\cos (4 \pi t)}{16}+\cdots\right)
$$

The odd extension is:

The sine series has the coefficients:

$$
b_{n}=2 \int_{0}^{1}\left(t-t^{2}\right) \sin (n \pi t) d t=\left\{\begin{array}{cc}
\frac{8}{n^{3} \pi^{3}} & n \text { odd } \\
0 & n \text { even }
\end{array}\right.
$$

The corresponding Fourier sine series will be:

$$
\frac{8}{\pi^{3}}\left(\sin (\pi t)+\frac{\sin (3 \pi t)}{27}+\frac{\sin (5 \pi t)}{125}+\cdots\right) .
$$

The odd extension is:

The sine series has the coefficients:

$$
b_{n}=2 \int_{0}^{1}\left(t-t^{2}\right) \sin (n \pi t) d t=\left\{\begin{array}{cc}
\frac{8}{n^{3} \pi^{3}} & n \text { odd } \\
0 & n \text { even }
\end{array}\right.
$$

The corresponding Fourier sine series will be:

$$
\frac{8}{\pi^{3}}\left(\sin (\pi t)+\frac{\sin (3 \pi t)}{27}+\frac{\sin (5 \pi t)}{125}+\cdots\right)
$$

9.3.13 - Find a formal Fourier series solution to the endpoint value problem

$$
x^{\prime \prime}+x=t \quad x(0)=x(1)=0
$$

Solution - We note that $\sin (n \pi t)$ has value 0 at $t=0$ and $t=1$ for all n, so we'll want to use the sine series.

$$
\begin{gathered}
x(t)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi t) \\
x^{\prime \prime}(t)=\sum_{n=1}^{\infty} a_{n}\left(-n^{2} \pi^{2}\right) \sin (n \pi t) .
\end{gathered}
$$

The Fourier coefficients for the sine series of t are:

$$
b_{n}=2 \int_{0}^{1} t \sin (n \pi t) d t=\left.2\left(-\frac{t \cos (n \pi t)}{n \pi}+\frac{\sin (n \pi t)}{n^{2} \pi^{2}}\right)\right|_{0} ^{1}=\frac{2(-1)^{n+1}}{n \pi}
$$

Plugging these into our differential equation we get:

$$
\begin{aligned}
& a_{n}\left(1-n^{2} \pi^{2}\right)=\frac{2(-1)^{n+1}}{n \pi} \\
& \Rightarrow a_{n}=\frac{2(-1)^{n+1}}{n \pi\left(1-n^{2} \pi^{2}\right)} .
\end{aligned}
$$

So,

$$
x(t)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n} \sin (n \pi t)}{n\left(n^{2} \pi^{2}-1\right)}
$$

9.3.20 - Substitute $t=\pi / 2$ and $t=\pi$ in the series

$$
\frac{1}{24} t^{4}=\frac{\pi^{2} t^{2}}{12}-2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}} \cos n t+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}, \quad-\pi<t<\pi
$$

to obtain the summations

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{\pi^{4}}{90^{\prime}} \\
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{4}}=\frac{7 \pi^{4}}{720} \\
\text { and } \\
1+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\cdots=\frac{\pi^{4}}{96} .
\end{gathered}
$$

For $t=\frac{\pi}{2}$ we get:

$$
\frac{1}{24}\left(\frac{\pi^{4}}{16}\right)=\frac{\pi^{2}}{12}\left(\frac{\pi^{2}}{4}\right)-2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}} \cos \left(\frac{n \pi}{2}\right)+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{4}}
$$

Now,

$$
\cos \left(\frac{n \pi}{2}\right)=\left\{\begin{array}{cc}
1 & n=4 k \\
-1 & n=4 k+2 \\
0 & n=4 k+1,4 k+3
\end{array}\right.
$$

So,

