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Continuous time models

e \We start with the model from Chapter 3
log.S; —log S;_1 = pAt + O‘\/EZJ'
e Sum it over j: log Sy —log S = iu& + i oV AtZ;
j=1 j=1

e Can we take the limit as N approaches infinity (delta t tends to zero)?
¢ \What are the benefits?

¢ |ast sum converges to a normal random variable, so we call it lognormal!

e what is more important than the distribution of S at a fixed time?

N

N
® increments: log Sy —log Sy = Y plAt+ Yy  oVAtZ
j=M+1 j=M+1
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Stock price as a process

* Prices at different times: Sy, S1,59,...,5N
¢ \We must consider them as a collection of random variables

e Obviously the order is important - when you enter at time j and exit at time Kk,
you care about log S; — log Sk, another random variable

e A collection of time indexed random variables - a stochastic process

* Not only are we concerned about individual S; as a random variable, we also
need to consider all possible increments log S; — log Sk

e As random variables, we ask for their distributions. But the relations between
different increments can be crucial for dependence consideration

e Natural first step: independent increments. Is it appropriate for stock prices?
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Increments

® Price change over a time period

e \What we get from our discrete model: a sum of independent Bernoulli rv’s -
binomial rv

e |f we further divide the time period into subintervals, we are still dealing with
binomial rv’s

e As the partition increases, these binomial rv’'s converge to normal rv’s (in
distribution), justified by CLT.

e Statistics: the mean and the variance (of increments) should depend on the
time elapsed: pu(t; —tx) and o*(t; — t1)

* Independent increments: as long as individual rv’s are independent!
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Random walk and Markov property

e Use notation X; = log .5;

e A sum of steps, each consisting of two components (drift + Z)

e Called a random walk, X_j is the position of the walk at time |

* Increments X, — X, independent of all the previous X’s before k

e Distribution of X at j, given X at k, is unaffected by the X values before k
e Dependence of the history up to k - only through X at k

e This is called the Markov property!
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From random walk to Brownian motion

® Think of the limiting processas N — oo, At - 0, NAt=T
* X; =X, — X;, collection of rv’s indexed by a continuous time variable t
e Properties inherited or extended:
e X at tis a normal random variable;
e increment X; — X, is a normal random variable:N (u(t — s),0%(t — s))
® increments from nonoverlapping periods are independent

e The path, X as a function of t, is continuous, but nowhere differentiable

e Standard notation: W,
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Definition of BM

e A process W, indexed by t for t>=0 is a Brownian motion if Wo =0, and for
every t and s (s<t), we have W, — W,distributed as a normal random variable
with mean O and variance t-s, and the random variable W; — W, iIs
independent of the W random variables before s.

e The above says much more. Just compare with X, = v/tY where Y = N(0,1)
e Quadratic variations and the relevance:

e why is it that the variance is proportional to the time elapsed?

e why is that BM paths are so ragged?

e how does the stock price variance grow in time?
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-xtending BM

e Add a (time-dependent) drift

e Allow local variance (for each step) to be time-dependent
» Discrete time:  X; — X;_1 = pujAt + 0;VALZ;
 Continuous time: dX; = u(t) dt + o(t) dW;

e Stock return over (t,t+dt):
d?st = p(t)dt + o(t) dW,
t

e This is the Black-Scholes model for stock price

dS
e Attempt to solve - do we have Tt —dlogS; ?
t

Tuesday, October 23, 12



lto’s lemma

e assume that f(x) is continuously twice differentiable

e usual differential: df = f’(x) dx

o if x=x(t) is also continuously differentiable (in t): df = f’(x) x’(t) dt

e now let x=X_t from a stochastic process as described in the previous slide
e notice W_t is nowhere differentiable

e guess: df(X;) = f(Xy)dXy = f(Xy) (pndt + o dWy) ?

e not quite! as we see Wi, = W/ = Wipn — Wi) (Wign + Wy)

= 2W, (Wi — W) + Wipn — Wy)?
o expect dW? = 2W, dW; + dt
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From Taylor expansion

e Assuming f(x) twice differentiable
/ ]‘ //
f(Xtgn) = f(Xe) + (X)) (Xepn — Xt) + §f (X )(Xpan — Xo)* + -+

° lto process: dX; = pu(X¢, t)dt + o( Xy, t) dW, with approximations:
Xt—l—h_Xt Z/,Lh+0\/EZ‘|‘€

(Xt—l—h — Xt)2 = ,LL2h2 -+ o’hZ? -+ QIuo'hB/QZ + ..

e Leading term (in h) after replacing ZA2 with 1: g2

e Justifications: the difference has mean and variance:

0°hE[Z* —1] =0, o*h?*Var(Z? —1) = 30"*h?
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lto’s lemma

o Letting h — dt
e Assuming differentiability again
d(f (X)) = (f/(Xt)M + %f”(Xt)02) dt + o f'(X¢) dWy
e |[f we allow f to be time dependent
00 1) = ((10X00) + oK O+ Fon (X0s0)0? ) -+ 0 (X0 Y,

e Theorem 5.1 (page 110) notations

dt* =0
dt dW; =0
(dWy)? = dt
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Applications

e Product rule: let X_t and Y_t be Ito processes

o |f dXt:uldt+01th

dY;g :,ngdt—l—O'Qth

* then dXt dYt — 0'10'2(th)2 — 0'10'2dt
e \What about

(%)

Tuesday, October 23, 12



Applications in stock price modeling

e Solving SDE %St = pdt + o dW,
t

o Try [f(5t) =logS:

1 1 1
t

1
® Integrate in t, assuming constant mu and sigma

1
log ST — log Sy = (M — 502> T+ ocWr

1
ST = Spexp [(u — 502) T + O'WT]
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CEV model

e Assuming volatility is S-dependent

dS _
?t — ,udt —+ Stﬁ 1O' th
t

e 0 <G <1 implies that the volatility is inverse proportional to S

St=~
=13

d(f(Sy)) = (Sl—% - gsﬁ—lc#) dt + o dW,

° f(9) lto’s lemma gives

e No luck in explicit solution unless beta="1
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Deriving Black-Scholes Equation

e Consider the pricing of a call option C, with strike K, expiration T

e Assume S follows a geometric BM

* Risk free interest rate r

e At time t<T, the price of call is a function of stock price at the time (S)

e Recognizing C=C(S,1)

oC oC 10%C

1
— (Ct + nuSCys + 50252055) dt + cSCgs dW;
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Deriving Black-Scholes Equation (continued)

e Forming a portfolio: one share of call + alpha shares of the stock
e Change of the portfolio over (t,t+dt), assuming constant alpha:
d(C + aS) = (Ct + uSCyg + 30252055 + oz,uS) dt + oS (Cs 4+ ) dW;

e [f we choose « = —Cg (delta hedging), the random component disappears,
which implies that the portfolio is hedged - no effect of stock price fluctuation

e Portfolio is lick-free, we must have d(C + aS) = r(C + a.S)dt

¢ This leads to the Black-Scholes PDE with terminal condition

1
C, +rSCs + 50252055 = rC C(S7t,T) = max(Str — K, 0)

e Compare with the standard heat equation, suggest backward in time
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Use of the PDE

e The PDE is parabolic, solutions will be smoothed in time (backward)
e Set up aregionin (S,t): 0 <t < T, 0<S< S_max

¢ Terminal condition imposed at t=T

e Solve backward in time to 0: C(S,0)

e Enter the observed current price S(0) in place of S

e Boundary conditions: C(0,t) = 0, C(S_max,t) = (S_max - K) exp(-r(T-t))

e Advantage of the PDE approach:
e casy to extend to time-dependent sigma

e efficient numerical methods available
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Justification of the derivation

e How do we justify this price (solution from a PDE)?

e Imagine you start with C(S,0), when the stock price is S. By following the
delta hedge strategy, you want to end up with the value max(S_T-K,0), no
matter what happens to the market

e Replication strategy: invest C(S,0) in stock and the risk-less bond, adjusting
according to the call delta, verify at T that the total value matches the call
payoff

e Composition of the portfolio: alpha shares of the stock, beta units of the bond

P(t) = a(t)5(t) + 5(t) B(t)

* o(t), B(t)to be adjusted, according to the strategy
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Change of value in the portfolio

e Change of portfolio value in time:  P(t + At) — P(t)
e |In differential: dP = a(t)dS(t) + B(t)dB(t) + S(t)da(t) + B(t)dp(t)

¢ |n discrete form:
ot + At)S(t + At) — at)S(t)
=a(t + At)S(t + At) — a(t)S(t + At) + a(t)S(t + At) — a(t)S(t)
= (a(t + At) — a(t)) St + At) + at) (St + At) — S(2))

_|_
B(t+ At)B(t + At) — B(t)B(t)
=0(t+ At)B(t + At) — B(t)B(t + At) + () B(t + At) — B(t)B(t)
= (B(t + At) — (1)) B(t + At) + 5(t) (B(t + At) — B(t))

e Total change in two parts:
at) (S(t+ At) — S(t)) + B(t) (B(t + At) — B(t)) — adS + 3dB

(a(t + At) —alt)) S(t+ At) + (B(t + At) — B(t)) B(t + At)
— Sda + Bd + dadS + dBdB
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Self-financing strategy

e First part in the last slide: change in stock price, bond price, holding shares
fixed over time period

e Second part: adjusting the number of shares, all at the end of the time period
e Self-financing strategy: making sure the second part is zero

e This corresponds to rebalancing in such a way that no money is taken out of
the portfolio, and no money is injected into the portfolio either

e Such is the name of the strategy: self-financing

e Consequence of this trading strategy:

dP = adS + (dB
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Replicating the call

e Begin with a portfolio P = «(0)S(0) + 5(0)B(0) = C(5(0),0)

® Following o = g—g , and a beta such that it is a self-financing strategy

e \Want to show P(T) = G(S(T),T), no matter what S(T) ends up with

e Consider the differential

d(P(S,t) — C(S,t)) = dP — dC

aC oC . 9C 192C .

2
_grpat— g - 19C

2 02
ot 29527 O dt

e We use % _ udt + odW, dB=rBdt, P— 2—3“53 , and the BS equation

e Result: d(P—-C)=7r(P—-SCg)dt—r(C—SCg)dt =r(P — C)dt
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Matching at T

e Solving the ODE: P(t) — C(t) = (P(0) — C(0))e™ =0
e We have P(5,t)=C(S,t), for0<t<T, the callis replicated!
* Need to check the self-financing condition

e Theorem 5.3:

e A unique beta exists, given alpha is a smooth function of S and an initial
portfolio value P(0), such that P = oS + 8B is a self-financing portfolio
with initial value P(0).

e Implication on the hedging practice: by the end of the trading adjustment
period, the rebalancing needs to observe the following condition: there can
only be transfer of money within the stock and bond accounts
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Solving the PDE

¢ | inear PDE, variable coefficients
e A series of changes of variables introduced to reduce to the heat equation

e First, S=¢“, we arrive at a constant-coefficient equation

— +(r— =0 + 0" — =1rC

oC 1 ,\0C 1 ,0°C
ot 2 ozZ 2 07?2

e Change of time variable =17 -1

1 ,\oC 1 ,0°C B
——(7‘—50)3—2‘5"@”‘7—0
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Heat Equation

¢ Eliminate the first-order term:

1
y:Z—|—<r—§02>7‘

e Standard heat equation
oD 1 ,0°D

— 0

or 2 Oy?

e |nitial condition is also likewise transformed
e Solution transformed into the original variables

e Black-Scholes formula reproduced

Tuesday, October 23, 12



Dividend-paying stock

® The previous model assumes no dividend paying stocks

e Many stocks do pay dividends

e FX products - foreign currency as the underlying and it grows at its rf rate
e This model assumes reinvestment

e |f the dividend rate is d, one share at t will grow to exp(d(T-t)) shares at T
e Buying exp(-d(T-t)) shares is equivalent to one futures contract:

e Price of a futures contract: S(t)e=%T~% — Ke—m(T—1)

e or delivery contract price X(t) = S(t)e~%T~Y the price at t to have one share
delivered at T
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Call option on X

e An option on X with expiration T must have the same value as an option on S
e But the delivery contract pays no dividend (X is its price)
® Process for X: % = (u+ d) dt + o dW;

t

¢ Drift does not matter!

° Callprice: o5 4) = XN(dy) — Ke " T N (dy)
= Se M T=IN(dy) — Ke "I "D N (dy)

_ log(S/K)+ (r—d+10%) (T —1t)

, do=di —oVT —t
ov i —t ° L=

e with dq

e Applies to commodity options - it costs money to hold commodities (d=-q),
this is the cost of carry.
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