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Abstract. Let X be an algebraic stack in the sense of Deligne-Mumford. We
construct a purely 0-dimensional algebraic stack ovdin the sense of Artin),

the intrinsic normal con€yx. The notion of (perfect) obstruction theory f&ris
introduced, and it is shown how to construct, given a perfect obstruction theory
for X, a pure-dimensionabirtual fundamental clasin the Chow group oiX.

We then prove some properties of such classes, both in the absolute and in the
relative context. Via a deformation theory interpretation of obstruction theories
we prove that several kinds of moduli spaces carry a natural obstruction theory,
and sometimes a perfect one.
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O Introduction

Moduli spaces in algebraic geometry often have an expected dimension at each
point: for instance, the moduli space of smooth complex projective surfaces with
ample canonical class has expected dimenkigi , Ty) — h?(V, Ty) at a point

[V]. In this example, the expected dimension is constant on connected compo-
nents, since it is equal te-x(V,Ty). In some cases the dimension coincides
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with the expected dimension, in others it does so under some genericity assump-
tions. However, it can happen that there is no way to get a space of the expected
dimension; it is also possible that special cases with bigger dimension are easier
to understand and to deal with than the generic case.

When we have a moduli spacé which has a well-defined expected di-
mension, it can be useful to construct in its Chow ring a class of the expected
dimension. By integrating certain cohomology classes over it, one obtains nu-
merical invariants. The main examples we have in mind are Donaldson theory
(with X the moduli space of torsion-free, semi-stable sheaves on a surface) and
Gromov-Witten invariants (wittX the moduli space of stable maps from curves
of genusg to a fixed projective variety). In this paper we deal with the problem
of defining such a class in a very general set-up. The construction is divided into
two steps.

First, given any Deligne-Mumford stack, we associate to it an algebraic
stack €x over X of pure dimension zero, it;itrinsic normal cone This has
nothing to do withX being a moduli space; it is just an intrinsic invariant,
whose structure is related to the singularitiesXo{see for instance Proposition
3.12).

Then, we define the concept of an obstruction theory and of a perfect obstruc-
tion theory forX. To say thatX has an obstruction theory means, very roughly
speaking, that we are given locally &han (equivalence class of) morphisms of
vector bundles such that at each point the kernel of the induced linear map of
vector spaces is the tangent spac&tcand the cokernel is a space of obstruc-
tions. Usually, ifX is a moduli space then it has an obstruction theory, and if
this is perfect then the expected dimension is constarX.o@nce we are given
an obstruction theory, with the additional (technical) assumption that it admits
a global resolution, we can define a virtual fundamental class of the expected
dimension.

An application of our results is given in a paper [3] by the first author. There
Gromov-Witten invariants are constructed for any genus, any target variety and
the axioms listed in [4] are verified.

We now give a more detailed outline of the contents of the paper. In the
first section we recall what we need about cones and we introduce the notion of
cone stacks over a Deligne-Mumford staxk These are Artin stacks which are
locally the quotient of a cone by a vector bundle acting on it. We call a cone
abelianif it is defined as Spec Syn¥ , where.7 is a coherent sheaf oK.

Every cone is contained as a closed subcone in a minimal abelian one, which we
call its abelian hull The notions of being abelian and of abelian hull generalize
immediately to cone stacks.

In the second section we construct, for a comexin the derived category
D (%) which satisfies some suitable assumptions (which we call Conditipn (
see Definition 2.3), an associated abelian cone $ta¢k®((E*)"). In particular
the cotangent compleky of X satisfies Condition«), so we can define the
abelian cone stacily := h'/h%((Ly)"), theintrinsic normal sheaf
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The name is motivated in the third section, whetg is constructed more
directly as follows:étale locally onX, embed an open sét of X in a smooth
schemeW, and take the stack quotient of the normal sheaf (viewed as abelian
cone) Ny ,w by the natural action offy|y. One can glue these abelian cone
stacks together to géix. The intrinsic normal con&y is the closed subcone
stack of9lx defined by replacingy , by the normal con€y )\ in the previous
construction.

In the fourth section we describe the relationship between the intrinsic normal
sheaf of a Deligne-Mumford stack and the deformations of affiné-schemes,
showing in particular tha?tx carries obstructions for such deformations. With
this motivation, we introduce the notion of obstruction theory Xar This is
an objectE* in the derived category satisfying Conditior),(together with a
morphismE* — Lg, and such that the induced map — hl/h((E*)Y) is a
closed immersion.

An obstruction theonE* is called perfect if¢ = h'/h%((E*)") is smooth
over X. So we have a vector bundle stagkwith a closed subcone staak,
and to define the virtual fundamental classXofwith respect toE* we simply
intersect®y with the zero section o§. This construction would require Chow
groups for Artin stacks, which we do not have at our disposal. There are several
ways around this problem. We choose to assumeHhast globally given by a
homomorphism of vector bundlds—! — F°. Then¢y gives rise to a con€
in Fy = F-1Y and we intersecE with the zero section ofF 1.

Another approach, suggested by Kontsevich [12], is via virtual structure
sheaves (see Remark 5.4). The drawback of that approach is that it requires
a Riemann-Roch theorem for Deligne-Mumford stacks, for which we do not
know a reference.

In the sixth section we give some examples of how this construction can
be applied in some standard moduli problems. We consider the following cases:
a fiber of a morphism between smooth algebraic stacks, a moduli space for
projective varieties and the scheme of morphisms between two given projective
schemes. We have often preferred to strengthen the assumptions in order to
simplify the construction.

In the seventh section we give a relative version of the intrinsic normal cone
and sheafty v andy vy for a morphismX — Y with unramified diagonal of
algebraic stacks; we are mostly interested in the case wYege smooth and
pure-dimensional, which preserves many good properties of the absolute case
(e.g.,Cx /v is pure-dimensional). In concrete cases, a relative obstruction theory
is often easier to deal with, or more natural to consider, than an absolute one.
This is the case for Gromov-Witten invariants (see [3]).

The starting point for this work was a talk by J. Li at the AMS Summer Insti-
tute on Algebraic Geometry, Santa Cruz 1995, where he reported on joint work
in progress with G. Tian. Their construction, in the complex analytic context,
was based on the existence of the Kuranishi map; by using it they defined, under
suitable assumptions, a pure-dimensional cone in some bundle and got classes
of the expected dimension by intersecting with the zero section.
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Our construction owes its existence to theirs; we started by trying to under-
stand and reformulate their results in an algebraic way, and found stacks to be a
convenient, intrinsic language. In our opinion the introduction of stacks is very
natural, and it seems almost surprising that the intrinsic normal cone was not
defined before. We find it important to separate the construction of the cone,
which can be carried out for any Deligne-Mumford stack, from its embedding
in a vector bundle stack. We work completely in an algebraic context; of course
the whole paper could be rewritten without changes over the category of analytic
spaces.

Acknowledgmentdhis work was started in the inspiring atmosphere of the Santa
Cruz conference. A significant part of it was done during the authors’ stay at the
Max-Planck-Institut fir Mathematik in Bonn, to which both authors are grateful

for hospitality and support. The second author is a member of GNSAGA of CNR.

Notations and conventions

Unless otherwise mentioned, we work over a fixed ground #eld

An algebraic stackis an algebraic stack ovér in the sense of [1] or [13].
Unless mentioned otherwise, we assume all algebraic stacks (in particular all
algebraic spaces and all schemes) to be quasi-separated and locally of finite type
overk.

A Deligne-Mumford stacks an algebraic stack in the sense of [5], in other
words an algebraic stack with unramified diagonal. For a Deligne-Mumford stack
X we denote byX; the big fppf-site and byX, the smallétale site ofX. The
associated topoi of sheaves are denoted by the same symbols.

Recall that a complex of sheaves of modulesfiperfect amplitude contained
in [a,b], wherea,b € Z, if, locally, it is isomorphic (in the derived category)
to a complexE® — ... — EP of locally free sheaves of finite rank.

1 Cones and cone stacks
Cones

To fix notation we recall some basic facts about cones.
Let X be a Deligne-Mumford stack. Let

s=ps

i>0

be a graded quasi-coherent sheaf’gfalgebras such th&° = %, St is coherent
andsS is generated locally b$’. Then the affineX-schemeC = SpecS is called
a coneover X. A morphismof cones overX is an X-morphism induced by a
graded morphism of graded sheavescgf-algebras. Aclosed subconés the
image of a closed immersion of cones. If
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G

1
C1—>C3

is a diagram of cones ovéX, the fibered producC; xc, C; is a cone ovek.
Every coneC — X has a section 0X — C, called thevertexof C, and an
Al-action (or a multiplicative contraction onto the vertex), that is a morphism

vyiAlxC —C

such that
1.
c & sixc
id N\, b
C
commutes,
2.
c &9 aixc
0N, L
C

commutes,

Alxalxc 9 atxc
mxid | 1~
Atxc - C
commutes, wheren : A x A — Al is multiplication,m(x, y) = xy.

The vertex ofC is induced by the augmentati@— S°, the Al-action is given
by the grading ofS. In fact, the morphisns — S[x] giving rise to~y maps
se S tosx.

Note that a morphism of cones is just a morphism respecting Oyand

Abelian cones

If .7 is a coherent’-module we get an associated cone
C(7) = Spec Sym).
For anyX-schemeTl we have
C(7)(T) = Hom(7, ),

soC(.7) is a group scheme ovet. We call a cone of this form aabelian cone
A fibered product of abelian cones is an abelian cond 6 a vector bundle
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over X, thenE = C(&V), where& is the coheren©x-module of sections of
and &V its dual. _
Any coneC = Spedd; >0 S' is canonically a closed subcone of an abelian

cone A(C) = Spec Syns?, called theassociated abelian coner the abelian
hull of C. The abelian hull is a vector bundle if and onlySt is locally free.
Any morphism of conesy) : C — D induces a morphisnA(¢) : A(C) —
A(D), extendinge. ThusA defines a functor from cones to abelian cones called
abelianization Note that¢ is a closed immersion if and only &(¢) is.

Lemma 1.1 A coneC overX is a vector bundle if and only if it is smooth over
X.

Proof. Let C = Spedd, ., S', and assume tha — X has constant relative
dimensionr. ThenS?! = 0" f2c x is arankr vector bundleC is a closed subcone
of A(C) = (S1)V, hence by dimension reasois= A(C). O

If E andF are abelian cones ovetr, then any morphism of cones: E — F
is a morphism ofX-group schemes. [E andF are vector bundles, thepiis a
morphism of vector bundles.

Example If X — Y is a closed immersion with ideal sheaf, then

@ _7n/.7n+1

n>0
is a sheaf of%-algebras and
Cx/y = Spe@ .7n/.‘7n+l
n>0

is a cone ovek, called thenormal coneof X in Y. The associated abelian cone
Nx,y = Spec Sym7 /.72 is also called theormal sheabf X in Y.

More generally, any local immersion of Deligne-Mumford stacks has a nor-
mal cone whose abelian hull is its normal sheaf (see [15], Definition 1.20).

Exact sequences of cones

Definition 1.2 A sequence of cone morphisms
0-—E-5C-—D-—0

is exactif E is a vector bundle and locally over X there is a morphism of cones
C — E splitting i and inducing an isomorphism & E x D.

Remark Given a short exact sequence
0 — 7% —7 —& —0
of coherent sheaves of, with & locally free, then
0—C(¥)—C(7F')—C(7F)—0

is exact, and conversely (see [6], Example 4.1.7).
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Lemma 1.3 Let C — D be a smooth, surjective morphism of cones, and let
E = C xp o X; then the sequence

0O—E—C—D—0
is exact.
Proof. Write C = Sped® S', D = Spea® S". We start by proving that
0-—E— AC) — AD) — 0

is exact.

By base change we may assurB8 = O for i > 2. The coneE =
SpecSyn¥ is a vector bundle because it is smooth. On the other hand,
E = Spedd(S'/S'*S'~1). As C — D is smooth and surjectives' — S*
is injective. So we get an exact sequence

0—St—st ¥ _0.

To complete the proof, remark th@t — A(C) xap)D is a closed immersion,
and both these schemes are smooth of the same relative dimensidn .oven

E-Cones

If E is a vector bundle and : E — C a morphism of cones, we say th@t
is an E-coneif C is invariant under the action & on A(C). We denote the
induced action oE on C by

ExC — C
(v,7) +— dv+y

A morphism¢ from an E-coneC to anF-coneD (or a morphism of vector
bundle conesis a commutative diagram of cones

d

E — C
6l l¢
F -9 bp.

If $:(E,d,C) — (F,d,D) andy : (E,d,C) — (F,d,D) are morphisms, we
call themhomotopig if there exists a morphism of coné&s C — F, such that

1. kd =y — ¢,
2. dk=p — ¢.

Here the second condition is to be interpreted as saying¢thatk = . (More
precisely, we say thadt is a homotopyfrom ¢ to p.)
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Remark A sequence of cone morphisms witha vector bundle
0—E-“C—D-—0

is exact if and only ifC is anE-cone,C — D is surjective, and the diagram

ExC 2. C
pl Lo
c 2D

is cartesian, wherp is the projection an@ the action.

Proposition 1.4 Let (C,0,v) and O, 0, ) be algebraicX-spaces with sections
and Al-actions and lety : C — D be anA!-equivariantX-morphism, which is
smooth and surjective. LdE = C xp o X. Assume thaE is a vector bundle.
ThenC is anE-cone overX if and only if D is a cone oveX. Moreover,C is
abelian (a vector bundle) if and only ¥ is.

Proof. Let us first assume tha is an abelian coneC = Spec Syn7. The
morphismE — C gives rise to.#7 — &V, where & is the coherent-
modules of sections d&. Note that7 — ¢V is an epimorphism, sincé — C
is injective. Let< be the kernel, so that

0—¥% -7 —&Y—0
is a short exact sequence. Then
0—E—C—C(¥)—0

is a short exact sequence of abelian cones dyesoD = C(%) and soD is
an abelian cone.

In general,C C A(C) is defined by a homogeneous sheaf of ide@lsc
Sym.~t, where.¥ = @." andC = Spec¥’. Let.7 = .1 and lets
as above be the kernel o# — &V. Let 7 = .7 N Sym%, which is a
homogeneous sheaf of ideals in S§fm soC’ = Spec Syni¢'/ 7 is a cone over
X. By constructionC’ is the scheme theoretic image @fin C(%). HenceC'’
is the quotient ofC by E and soC’ = D andD is a cone.

Now for the converse. The claim is local X. Note thatC — D is an
E-torsor overD. So sinceD is affine overX we may assume th& =D x E
as X-schemes withi!-action. Then we are done. O

Cone stacks

Let X be, as above, a Deligne-Mumford stack okerWe need to define the
2-category of algebraic stacks with'-action overX.
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Definition 1.5 Let ¢ be an algebraic stack over X, together with a sectibn
X — ¢. An Al-actionon (¢, 0) is given by a morphism of X -stacks

yiAlx e —¢

and three 2-isomorphisnts, 6y and6., between the 1-morphisms in the following
diagrams.

1.
¢ Y aixe
id N\, b
¢
, anddy 1id — 7o (Lid).
¢ @Y gixe
0N\ Ly
¢
3 anddy: 0 — v (0,id).
Alxalxe 9 alxe
mxid | LA

Atxe L ¢
andé, :yo(mxid) — v o (id xv).

The 2-isomorphismé,, 6o and ¢, are required to satisfy certain compatibilities

which we leave to the reader to make explicit (see also Sect. 1.4 in Expdd

of [2], where a similar problem, the definition of Picard stacks, is dealt with).
Let(¢,0,7) and (D, 0, ) be X-stacks with sections add-actions. Then an

Al-equivariant morphisme¢ : ¢ — D is a triple (¢, 7m0, 7,), Whereg : ¢ — D

is a morphism of algebraic X-stacks anglandn., are 2-isomorphisms between

the morphisms in the following diagrams.

1.
X % ¢
o\, Lo 1)
D
andng:0— ¢o0.
2. ,
Alxe "9 glxp
vl 1~ (2

¢ — D
andn.y . Qﬁo’Y—)’yo(id ><¢)
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Again, the 2-isomorphisms have to satisfy certain compatibilities we leave to the
reader to spell out.

Finally, let(¢, no, ) : € — ® and(y, ng, 75,) : € — D be twoA r-equivariant
morphisms. Am\!-equivariant isomorphisng : ¢ — y is a 2-isomorphisng :
¢ — p such that the diagrams (notation compatible with (1) and (2))

1.

0 & 4.0
76\ 1 ¢o0
1/}00
2.
poy — 7ol(idxe)
oy | 1 yolid x¢)
Pory — 7ol(idxyp)
commute.

If C is anE-cone, then sinc& acts onC, we may form the stack quotient of
C by E overX, denoted € /E]. For anX-schemeT, the groupoid of sections of
[C/E] overT is the category of paird f), whereP is anE-torsor (a principal
homogeneou&-bundle) overT andf : P — C is anE-equivariant morphism.

The X-stack [C/E] comes with a section 0X — [C,E] and anA!-action
v : Al x [C/E] — [C/E]. The section 0 is given by the paiEf, 0) over every
X-schemerT ; hereEr is the trivial E-bundle onT and 0 :E; — C is the vertex
morphism. TheA!-action ofa € AY(T) = ¢ (T) on the category@ /E](T) is
given bya - (P,f) = (oP, of ), whereaP =P xg o E andaf : P xg , E — C
is given by p,v] — of (p) +d(v).

If $:(E,C) — (F,D) is a morphism of vector bundle cones we get an
inducedA-equivariant morphisng : [C/E] — [D/F]. A homotopyk : ¢ — p
gives rise to anil-equivariant 2-isom0rphisrﬁ : 5 — 9 of Al-equivariant
morphisms of stacks witi.-action. (See Sect. 2 where these constructions are
made explicit in a similar case.)

Lemma 1.6 Let ¢,y : (E,C) — (F,D) be morphisms and : ¢ — 7 an
Al-equivariant 2-isomorphism between the associate@quivariant morphisms

[C/E] — [D/F]. Then¢ =k, for a unique homotopk : ¢ — p.

Proof. We indicate how to construdt : C — F. Given a sectiorc € C(T) of
C over theX-schemeT, we consider the induced objedE(, c) of [C/E](T).
The associatedrr-torsorsEr xg; 40 Fr and Er xg 4 Fr are trivial, so that
o(T)(Er,c) is a section o overT. This section we define to Bgc). O

Proposition 1.7 Let C be anE-cone andD anF-cone. Lety : (E,C) — (F,D)
be a morphism. If the diagram
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l

T «— M
O— O

—

is cartesian andF x C — D; (u,v) — du + ¢(v) is surjective, thenQ /E] —
[D/F] is an isomorphism of algebrai-stacks withA!-action.

Proof. Similar to the proof of Proposition 2.1 below. O

Definition 1.8 We call an algebraic stacke, 0,y) over X with section ana.*-
action acone stack if, locally with respect to thétale topology on X, there exists
a cone C over X and aa'-equivariant morphism C— ¢ that is smooth and
surjective and such that E C x o X is a vector bundle over X.

The morphism C— ¢, or by abuse of language C, is calledacal presen-
tation of ¢. The sectior® : X — ¢ is called thevertex of ¢.

Let¢ and® be cone stacks over X.rorphism of cone stacks¢ : ¢ — ©
is an Al-equivariant morphism of algebraic X -stacks.

A 2-isomorphism of cone stacksis just anA!-equivariant 2-isomorphism.

If C — ¢ is a presentation of, andE = C x¢ o X, thenC is anE-cone
and¢ ¥~ [C/E] as stacks withi!-action (use Lemma 1.3 and Proposition 1.4).

If ¢ : ¢ — D is a morphism of cone stacks, then, locally with respect to
the étale topology orX, ¢ is Al-equivariantly isomorphic toG/E] — [D/F],
whereE — F is a morphism of vector bundles ovérandC — D is a morphism
from the E-coneC to theF-coneD.

A 2-isomorphism of cone stacks: ¢ — p, whereg,p : ¢ — D, is locally
over X given by a homotopy of morphisms of vector bundle cones. More pre-
cisely, one can find local presentatiah$” [C /E] and® = [D /F] such that both
¢ andy are induced by morphisms of vector bundle copgs: (E,C) — (F,D)
and under these identificatiogscomes from a homotopy from to ». This fol-
lows from Lemma 1.6.

Remark Let ¢ be a cone stack ovet. By Proposition 1.4 the fibered product
over ¢ of any two local presentations is again a local presentation. Moreover, if
¢ is a representable cone stack o%erthen¢ is a cone. Every fibered product

of cone stacks is a cone stack.

Examples All cones are cone stacks and all morphisms of cones are morphisms
of cone stacks. For a vector bundteon X, the classifying stacBE is a cone
stack. Every homomorphism of vector bundl¢s: E — F gives rise to a
morphism of cone stacks.

Definition 1.9 A cone stack over X is calledabelian, if, locally in X, one can
find presentations G- ¢, where C is an abelian cone. A cone stack igeator
bundle stack if one can find such local presentations such that C is a vector
bundle. If¢ is abelian (a vector bundle stack), then for every local presentation
C — ¢ the cone C will be abelian (a vector bundle).
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Proposition 1.10 Every cone stack is a closed subcone stack of an abelian cone
stack. There exists a universal such abelian cone stack. It is calledsbeiated
abelian cone stackr the abelian hull

Proof. Just glue the stacks obtained from the abelian hulls of local presentations.
O

Definition 1.11 Let ¢ be a vector bundle stack arél — ¢ a morphism of cone
stacks. We say that is an ¢-cone stack if ¢ — ¢ is locally isomorphic (as
a morphism of cone stacks, i.£!-equivariantly) to the morphisifE; /Eq] —
[C/F] coming from a commutative diagram

Eb — F
! |
E1*>C,

where C is both an E and an F-cone.

If ¢ is an ¢-cone stack, then there exists a natural morph&m ¢ — ¢
coming from the actiorE; x C — C in a local presentation af — ¢ as above.
We call ¢ x ¢ — ¢ the action of ¢ on ¢.

Definition 1.12 Let ¢ — ¢ — © be a sequence of morphisms of cone stacks,
where¢ is an ¢-cone stack. If

1. ¢ — D is a smooth epimorphism,
2. the diagram

exe . ¢
pl !
¢ —

(where p is the projection and the action) is cartesian,

we call0 - ¢ — ¢ — D — 0 ashort exact sequencef cone stacks. Note that
this is equivalent t& being locally isomorphic ta@ x D.

Proposition 1.13 The sequenc& — ¢ — © of morphisms of cone stacks is
exact if and only if locally inX there exist commutative diagrams

0O — kg — F — G — O

! | !

O — &k —C — D — 0

where the top row is a short exact sequence of vector bundles and the bottom
row is a short exact sequence of cones, such ¢hat ¢ — D is isomorphic to
[E1/Eo] — [C/F] — [D/G].

Proof. The statement is local oK. To prove the only if part we can assume
¢ = ¢ x D, and then it is trivial. To prove the if part, note that both short exact
sequences are locally split. O
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2 Stacks of the formh?/h0
The general theory

We shall review here some aspects of the theory of Picard stacks developed by
Deligne in Sect. 1.4 of Exp@sXVIll in [2]. For the precise definition of Picard
stack see [ibid.]. Roughly speaking, a Picard stack is a stack together with an
‘addition’ operation, that is both associative and commutative. An example would
be the stack of torsors under a commutative group sheaf.

Let X be a topos and : E° — E' a homomorphism of abelian sheaves on
X, which we shall consider as a complex of abelian sheaveX.ovia d, the
abelian sheaE° acts onE*! and we may consider the stack-theoretic quotient of
this action, denoted

h'/h%(E*) = [E*/E],
which is a Picard stack oX. (See also [ibid.] 1.4.11, whete! /h°(E*) is de-
noted chE*).) For an object) € obX the groupoich! /h°(E*)(U) of sections of
h1/h%(E*) overU is the category of paird™, f), whereP is anE°-torsor (prin-
cipal homogeneouk®-bundle) overd andf : P — E1|U is anE°-equivariant
morphism of sheaves dd.

Now if d : F® — F! is another homomorphism of abelian sheavesXon
and¢ : E* — F* is a homomorphism of homomorphisms (or in other words
a homomorphism of complexes), then we get an induced morphism of Picard
stacks (an additive morphism in the terminology of [ibid.])

h'/h%¢) : h'/h%E*) — h*/h°(F*).
For an objecU € obX the functorh!/h%¢)(U) maps the pairR, f) to the pair
(P xgo g0 F0, ¢*(f)), where¢*(f) denotes the map
o(f) P xpF® — F!
[p,v] — ¢'(f()+d().

Now, if p : E* — F* is another homomorphism of complexes d&nd¢ — p
is a homotopy, i.e. a homomorphism of abelian she&veg! — F°, such that

1. kd =90 — ¢°,

2. dk =pt — o1,

then we get an induced isomorphigm h!/h%(¢) — h/h%y) of morphisms of
Picard stacks fromh/h%(E*) to h*/nh%(F*). If U € obX is an object, thed(U)

is a natural transformation of functors froht /h%(¢)(U) to h'/h%()(U). For

an object P, ) of h/h®(E*)(U) the morphismd(U)(P, f) is a morphism from
h®/h%(g)(U)(P,f) to hl/hO)(U)(P,f) in the categoryh?/hO(F*)(U). In fact,

6(U)(P,f) is the isomorphism oF °|U -torsors

9(U )(P,f) P XEO’¢O FO — P XEO,W) FO (3)
[p,v] — [p,kf(p)+2],
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such that the diagram ¢f°/U -sheaves

P ><E°,¢° FO
oU)P.f) | N\ M)
o O -1
P XEO 40 F — F

commutes.

Proposition 2.1 Let ¢ : E* — F* be a homomorphism of homomorphisms of
abelian sheaves 0xX, as above. It induces isomorphisms on kernels and coker-
nels (i.e. if¢ is a quasi-isomorphism), thén' /h%(¢) : ht/h°%(E*) — h1/hO(F*)

is an isomorphism of Picard stacks owér

Proof. First let us treat the case thatis a homotopy equivalence. Then, in fact,
any homotopy inverse aof will provide an inverse tch!/h%(¢), by the above
remarks.
As a second case, let us assume tfat E* — F* is an epimorphism (i.e.
#° and¢! are epimorphisms). In this cagg — [F!/F°] is an epimorphism, so
for [E/EY] to be isomorphic tof/F], it is necessary and sufficient that
EOx gl M g2
prl !
E! — [FY/FQ

be cartesian. This quickly reduces to proving that

E'xE® — E!
! !

E'xF° — F!
is cartesian, which, in turn, is equivalent to

EO — E!

! !

Fo . F1

being cartesian, which is a consequence of the assumptions.

Finally, let us note that a generdl factors as a homotopy equivalence
followed by an epimorphism. To see this consider & F°, which is ho-
motopy equivalent toE*. Define a homomorphism : E* @ FY — F* by
¥o>v, 1) = ¢O@v) +  and p*(x, ) = ¢'(x) + d(u). Theny is surjective and
¢ =9oi,wherei :E* — E* @ FCis given byi =id@0. O

If E* is a complex of arbitrary length of abelian sheavesXgriet
Z'(E*)
C'(E")

ker€' — E'*Y)
cokE't — E).
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The complexE* induces a homomorphism
moyE* = [CUE*) — ZY(E*)]

and we leth!/hO(E*) = h!/hO(rp 4E*).

Now let @ be a sheaf of rings oK andC (%), K (%) andD (¢%) the cate-
gory of complexes of%-modules, the category of complexes®@f-modules up
to homotopy and the derived category of the category Mgdl(of %-modules,
respectively. Lety : E* — F* be a morphism irD(%). Let

H- L Fa
al
Et

be a diagram irnC(¢%) giving rise to¢, wherea is a quasi-isomorphism. We
get an induced diagram of Picard stacks

1 0
hi/hoH®) "9 himoEe)
ht/h%a) |
ht/h%(E*),

whereh!/h%«) is an isomorphism by Proposition 2.1. Choosing an inverse of
h!/h%c) induces a morphism

h'/h°(E*) — ht/hO(F*).

One checks that different choices af,H*,») and h/h%a)~! give rise to
isomorphic morphism#*/h%(E*) — h'/h°(F*). This proves in particular that
if E* andF* are isomorphic irD (%), then the Picar-stacksh!/h%(E*) and
h1/h%(F*) are isomorphic.

Example If d : E® — E! is a monomorphism theh!/h%(E*) = cok@d) is a
sheaf overX.

If d : E® — Eis an epimorphism theh!/h°(E*) = B ker(d) is a gerbe over
X.

Lemma 2.2 1. Let ¢,» : E* — F* be two morphisms irD(¢%). Then, if
for some choice oh'/h%¢) and h'/h%y) we haveh!/n%¢) = hl/hO(y) as
morphisms of Picard stacks, ther y.

2. Let OE,F) be the zero morphism B(F) : h/h%E*) — hl/hO(F*).
Then Aut(OE,F)) = Homg(ﬂx)(Ez F*).

Proof. These are similar to Lemma 1.6. See also [ibid.[2
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Application to schemes

Let X be a Deligne-Mumford stack. Consider the morphism of topoi
viXy — Xé1~

The functorv, restricts a sheaf on the big fppf-site to the snéddlle site and its
left adjointv—! extends the embedding of tlegale site into the flat site.

Let %, and ., denote the sheaves of rings induceddy on X, and X,
respectively. There is a canonical morphism of sheaves of ting&x,, — ,,
so that we have a morphism of ringed topoi

v (X“> /Xﬂ) - (xén (Xm)
The induced functor from Modf,,) to Mod(,) will be denoted byv*:
vrM) =07 IM @y Oy

Since Mod(¢’,,) has enough flat modules we may derive the right exact functor
v* to get the functoLv* : D~ (%,) — D~ (¢%,). To abbreviate notation, we
write M;* = Lv*M* for M* € obD ~(,,).

We shall also need to consider the functor

R.Zom(-, ;) : D~ (%) — D¥(Ox,).
It is defined using an injective resolutiefy, — .7* of %,, i.e.
R.Fom(M*, Cx,) = tot.ZZom(M *,.7*),
but if M* happens to have a projective resolutiefr = M*, then we have
R.Z6om(M*, (%,) = .Fbom(F*, Cky).
We shall abbreviate notation by writing
M*Y = R.ZZom(M*, Cx,).

We will be interested in the stack!/h°(M,")") associated to an object
M* € obD ~(%,). Note that for suctM * € obD ~(%,) we have

h'/ho((M;")Y) = h/h%((r>_1M;)).
Definition 2.3 We say that an objectLof D(%,,) satisfies Condition () if

1. W(L*)=0foralli >0,
2. h'(L*) is coherent, for i= 0, —1.

Proposition 2.4 Let L* € obD(%,) satisfy Condition £). Then theX-stack
h1/ho((L:)Y) is an algebraicX-stack, in fact an abelian cone stack ovér
Moreover, ifL* is of perfect amplitude contained in-IL, 0], thenh/hO((Ls)Y)
is a vector bundle stack.
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Proof. The claim is local inX (with respect to thettale topology), so we may
assume thdt*® has a free resolution, or thht itself consists of free’-modules.
We may also assume that = 0, for alli > 0 and thatL® andL~! have finite
rank. ThenL; is given byL* itself, since a free sheaf is flat, and'}" is given
by LV*, taking duals component-wise, since a free module is projective. Thus
ht/ho(L)Y) = (2L /L,

which is the cone stack given by the homomorphism of abelian chitls—
ZYLV®) =Cc(CLL)).

If L* is of perfect amplitude contained in-IL, 0], then we may assume that

in addition to the above assumptiolds= 0, for alli < —2. ThenZ(LV*) = Lv:
is a vector bundle. O

So if ¢ : E* — L*® is @ homomorphism i (%,,), whereE* andL* satisfy
(%), then we get an induced morphism of algebraic stacks

¢" thi/hO(LD)Y) — hi/hO(E)Y).

Proposition 2.5 The morphismp" is a morphism of abelian cone stacks. More-
over, h%(¢) is surjective, if and only itV is representable.

Proof. The fact thatp" is a morphism of abelian cone stacks is immediate from
the definition. The second question is locaknso we may assume that and

L* are complexes of fre€x-modules and thaE' = L' =0, fori > 0, and that
L% L—1, E® andE 1 are of finite rank. Consider the commutative diagram

cC Y — E°
| !
C—l(L.) — O
of coherent sheaves of.. Let F be the fibered product

F — EO°

! )
clLy) — Lo

The fact thath®(¢) is surjective, is equivalent to saying that the sequence
0—F —E°¢C}L) —L°—0
is exact. Sincd.0 is free, we get an induced exact sequence of cones
0— LY —EYYazYLY") — C(F) —O.
Hence by Proposition 1.7 we have
[Z4LY")/LY%) = [C(F)/EV).

In particular the diagram
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C(F) —  ZYEV")
| !
ht/no((L3)Y) — hi/h%(E)Y)

is cartesian, henceV is representable.

For the converse, note thai’ representable implies that’® — EVO x
ZY(LV*) is a closed immersion, which implies thBf & C—1(L*) — L% is an
epimorphism. 0O

Proposition 2.6 The morphism¢” is a closed immersion if and only H(¢)
is an isomorphism anti—1(¢) is surjective. Moreoverg" is an isomorphism if
and only ifh%¢) andh=%(¢) are.

Proof. Following the previous argumen,” is a closed immersion if and only
if C(F) — ZY(EV*) is. This is equivalent t&C ~1(E*) — F being surjective. A
simple diagram chase shows that this is equivaleh(®) being an isomorphism
andh—1(¢) being surjective. The ‘moreover’ follows similarly. O
Proposition 2.7 Let

E*—F°" —G* — E°[1]

be a distinguished triangle D (), whereE* andF* satisfy &) andG* is of
perfect amplitude contained ir-fL, 0]. Then the induced sequence

h*/h%GY) — h'/h%(FY) — h'/h%E")
is a short exact sequence of abelian cone stacksXver

Proof. The question is local, so assume tEétandFi are O fori > 0 and vector
bundles fori =0, —1, and thatG' = F' @ E'*1. We have to prove that

0 — [2Y%GY)/GY" — [ZXFY)/FV? — [ZYEY)/EY"] — 0

is a short exact sequence of cone stacks. By Proposition 1.13, it is enough to
prove that the exact sequence of sheaves

0—CHE) —CYF)pE’ —-C}G*) —0

is exact. This is then a straightforward verificationOO

3 The intrinsic normal cone
Normal cones

Normal cones have the following functorial property. Consider a commutative
diagram of (arbitrary) algebraic-stacks
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X/ l_) &
ul L 4)
X - Y,

wherei andj are local immersions. Then there is a natural morphism of cones
over X’

(0N CX’/Y’ — U*Cx/y.

If (4) is cartesian, them is a closed immersion. If, moreover,is flat, thena
is an isomorphism.

Proposition 3.1 Consider a commutative diagram of Deligne-Mumford stacks

X oy
N lf
Y

3

wherei andi’ are local immersions antl is smooth. Then the sequence of
morphisms of cones ovet

i"”"Ty/ /v = Cxyyr — Cx v, )
where the maps and 3 are the natural ones, is exact.

Proof. The question is local, so we can assume Kaly andY’ are schemes
and thati’ andi are immersions. This is then Example 4.2.6 in [6]0

Lemma 3.2 Let
Uu-—-M

be a local immersion of affink-schemes of finite type, wheid is smooth over
k. Then the normal con€y ;y — Ny v is invariant under the action ¢f Ty,
on Ny /m - In other wordsCy v is anf*Ty-cone.

Proof. Letpi : M x M — M, i =1, 2, be the two projections. Each one gives
rise to a commutative diagram

Af

Uu — MxM
f\: lpl
M,

and hence to an exact sequence

O—)f*TM j—i>Nu/MXM h)NU/M —)0

of abelian cones ot .
The diagonal gives rise to the commutative diagram
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f

u — M
Af N\ 1 a
M x M

and hence to a homomorphism

Ny /m - Nu /M xm

of abelian cones obJ .

Now s is a section of bothp;, andp,,. Using (1, p1,) we make the identi-
fication

Nu/mxm =F*Tm x Ny /m- (6)

Thenp,, is identified with the action of *Tyy on Ny v . Since the same func-
torialities of normal sheaves used so far are enjoyed by normal cones, we get
that under the identification (6) the subco@g v xm C Ny mxm coOrresponds
to f*Ty x Cy,m and the actionpp, : f*Ty x Ny,m — Ny, m restricts to
P2, : f*Twm XCU/M _’CU/M- O

The following is not used until Sect. 5.

Consider the diagram (4), assume it is cartesian and assume tisah
regular local immersion. Assume also théatis smooth of constant dimension.
Let C = Cx,y andN =Ny, y. Then we get an induced cartesian diagram

NxyC — uC — C

! ! !
i*N — X 5 X (7)
! il Li

N Loy 25y,

If Y is a scheme, Vistoli constructed in [15] a canonical rational equivalence
B(Y', X) € W,(N xy C) such that

OBY',X) = [Cu-c/c] = [p*Cxr vl
Note Let 0:u*C — N xy C be the zero section. Then
0'[Cy-c/c] = '[C] € A(u"C),
by the definition ofv'. On the other hand,
0'[p*Cxrv1=0'p'[Cxrv/]1 = [Cxrjv/] € AL(U*C).
So the existence of Vistoli’s rational equivalence implies that
v'[C]= [Cxr v

Proposition 3.3 Vistoli’s rational equivalence commutes with any smooth base
change¢ : Y1 — Y. More precisely, if we denote by a subscript){ the base
change viap of any object in (7), then

¢*B(Y/7 X) = ﬁ(Ylfvxl) S W*(Nl ><Y:L Cl)
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Proof. If ¢ is étale, this is Lemma 4.6(ii) in [15]. Vistoli's proof is based on the
fact that the following commute wittale base change: blowing up a scheme
along a closed subscheme; normalization; order of a Cartier divisor along an
irreducible Weil divisor on a reduced, equidimensional scheme. But all these
operations do in fact commute with smooth base change.

A first consequence of this proposition is that we may drop the assumption
thatY be a scheme. We geXY’, X) € W,(N xy C) for any situation (7). The
consequence'[C] = [Cx//y-] holds if Y (and hence all other stacks in (7)) is of
Deligne-Mumford type.

Now let us assume that: X — Y factors as

X XY
i\ lﬂ'
Y

)

where7 is another local immersion and is of relative Deligne-Mumford type
(i.e. has unramified diagonal) and is smooth of constant fiber dimension. Then
we construct the cartesian diagram

Y %Y
1 L=
Yo 2y
and over
X 4 X
PR s
Y 4y
we construct the analogue of (7):
N><y6 — uC — C
1 1 1
i*N — X 5 X 8)
1 T
7*N Ly YSY

?

ie.C= CX/V' Diagrams (7) and (8) may be fused into one large diagram

N xvy C — uC — C
! ! la
NxyC — uC — C
! ! !
i*N — X 5 X )
Tk
~N Loy Ly
! ! b
N Loy Sy
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By Proposition 3.1 the morphisﬁ — Cis aTg ,, xg C-bundle.

/Y
Proposition 3.4 We havea*(8(Y’, X)) = 8(Y’,X) in W,(N xy C).

Proof. By the compatibilities ofs proved in [15] we reduce to the case that
Y = Ay, m: A} — Y is a relative affinen-space and': Y — A{ is the zero
section. Then one checks that Vistoli’s construction commutes with O

Proposition 3.5 In the situation of Diagram (7) assume thétis of Deligne-
Mumford type. Vistoli's rational equivalengg&(Y’, X) € W,(N xy C) is invariant
under the natural action ¢fN xy Ty onN xy C.

Proof. The vector bundlé*Ty acts on theX-coneC by Lemma 3.2. Pulling
back fromX toj*N gives the natural action ¢fN xy Ty onN xy C. Using the
construction of the proof of Lemma 3.2 the claim follows from Proposition 3.4
applied toY =Y x Y andi=Aci : X Y xY. O

The intrinsic normal cone

Let X be a Deligne-Mumford stack, locally of finite type overLet Ly be the
cotangent complex of relative tok. ThenLs € obD (¢%.,) andLy satisfies £).

Definition 3.6 We denote the algebraic stack/MmO(((Ly)q)") by 9x and call it
theintrinsic normal sheaf of X.

We shall now construct the intrinsic normal cone as a closed subcone stack
of Nx .

Definition 3.7 A local embeddingof X is a diagram

where

1. U is an affine k-scheme of finite type,

2. i:U — X is anétale morphism,

3. M is a smooth affine k-scheme of finite type,
4. f :U — M is a local immersion.

By abuse of language we call the pgW , M) a local embedding of X.
A morphism of local embeddings: (U’,M’) — (U,M) is a pair of mor-
phisms¢y : U’ — U and¢y : M’ — M such that

1. ¢y is anétale X-morphism,
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2. ¢m is a smooth morphism such that

f/

u — ™M’
¢ul, l(ﬁM
u ——» ™

commutes.

If (U’,M’) and U, M) are local embeddings &f, then U’ xx U, M’ x M)
is naturally a local embedding of which we call theproductof (U’,M’) and
(U, M), even though it may not be the direct product bf' (M’) and U, M)
in the category of local embeddings Xf

Let

u - ™

il
X
be a local embedding of. Let | /I 2 be the conormal sheaf & in M. There

is a natural homomorphism of coherefiy -modulesl /12 — f*£2y. Moreover,
there exists a natural homomorphism

¢ LU — [1/12 = f*02u]

in D(4,), where we think of I[/I2 — f*f2y] as a complex concentrated in
degrees—1 and 0. Moreoverg induces an isomorphism dm—! and h® (see
[10], Chapitre 1lI, Corollaire 3.1.3). Hence by Proposition 2.6 we get an induced
isomorphism of cone stacks

¢" 1[Ny m /f Tm] — "9,

whereTy is the tangent bundle dfl andNy /v is the normal sheaf of the local
embeddingf. In other wordsNy /v is a local presentation of the abelian cone
stackx.

If x: (U’,M’) — (U,M) is a morphism of local embeddings we get an
induced commutative diagram

/12U — £ Qu|U’
! !
|//|12 N f/*.QM/

in other words a homomorphism
N[ /12 = 2u]U — 1177 = £ 0]

We havex o ¢|U" = ¢’ in D(,), because of the naturality ef. Thus the
induced morphism

XY o [Ngm /E T ] — [N m /F*Tw]|U”
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is compatible with the isomorphisms fx. Note that, in particulary" is an
isomorphism of cone stacks over'.

Recall Lemma 3.2. Lety : (U',M’) — (U,M) be a morphism of local
embeddings. Then we get an induced morphism fromff.ﬁ@M/-coneCU,/M/
to thef*Ty |U’-coneCy v |U’. Note that the kernel of *Ty, — f*Tu|U’ is
f/*TM //M -

Lemma 3.8 The pair Cy,m — Ny,m)|U’ is the quotient of Cy//y/ —
Ny-/m-) by the action off Ty /u.

Proof. This follows immediately from Proposition 3.1. O

Corollary 3.9 The isomorphism
Xt [Ny m /f Tl — [Ny /¥ Tw]|U”

identifies the closed subcone st&C /v /f ™Tw-] with the closed subcone stack
[Cu/m/F*TM]U".

By this corollary, there exists a unique closed subcone stack> 9y, such
that for every local embeddingJ( M) of X we have¢x|U =[Cy v /f*Twu], or
in other words that

Cum — Ny/m
! 1
Cx — X

is cartesian.
Definition 3.10 The cone stacKy is called theintrinsic normal cone of X.

Theorem 3.11 The intrinsic normal conéy is of pure dimension zero. Its abelian
hull is 91x.

Proof. The second claim follows because the normal sheaf is the abelian hull
of the normal cone, for any local embedding. To prove the claim about the
dimension of¢x, consider a local embedding (M) of X, giving rise to the
local presentatiorCy /y of €x. Assume thaM is of pure dimension. We then
have a cartesian and cocartesian diagrart eftacks

f*TM X CU/M — CU /M
! 1
Cu/m — [Cum/F*Tm].

Thus Cy /m—[Cy m/f*Tu] is a smooth epimorphism of relative dimension
dimM. So sinceCy /v is of pure dimension div (see [6], B.6.6) the stack
[Cu,m/f*Tm] has pure dimension did — dimM =0. O
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Remark One may construct9lyx by simply gluing the various stacks

[Ny /m /f*Tm], coming from the local embeddings Bf. So one doesn't need the
construction preceding Proposition 2.4 to define the intrinsic normal sheaf and
the intrinsic normal cone. But for object* of D~ (¢%,) satisfying &) other
thanLy, we could not prove that such gluing works a priori. The problem is, that
in general one does not have such a nice distinguished class of local resolutions
of E* (like the one coming from local embeddings fbg). In general, local
(free) resolutions oE* are only compatible up to homotopy.

Basic properties

Proposition 3.12 (Local complete intersections)rhe following are equivalent.

1. X is a local complete intersection,
2. €y is a vector bundle stack,
3. Cx = MNx.

If, for example,X is smooth, we havey = 91x = BTx.

Proof. (1)=(3). If X is a local complete intersection, then local embeddings of
X are regular immersions, but for regular immersions normal cone and normal
sheaf coincide.

(3)=(2). If for a local embedding normal cone and normal sheaf coincide, then
it is a regular immersion. ThuX is a local complete intersection so thax is

a vector bundle stack.

(2)=(2). If ¢x is a vector bundle stack it is equal to its abelian hull. Hence
Cx =9 and X is a local complete intersection. O

Proposition 3.13 (Products)Let X andY be Deligne-Mumford stacks of finite
type overk. Then
NMxxy = INx x Ny

and
Q:X><Y = Q:x X Qy.

Proof. If X C V andY C W are affine schemes, it is easy to check that there is
a natural isomorphisry ,, x Cy w — Cxxy /v xw, COmpatible withétale base
change; the same is true if we replace the normal cone by the normal sheaf.
If C is anE-cone and is anF-cone, therC x D is anE x F-cone and there
is a canonical isomorphism of cone stacks/E] x [D/F] — [C x D/E x F].
Putting together this remarks and verifying that the canonical isomorphisms
glue completes the proof. O

Proposition 3.14 (Pullback) Let f : X — Y be a local complete intersection
morphism. Then we have a natural short exact sequence of cone stacks

Nxyy — & — F ¢y

over X, wherefy ,y = hl/ho(Ti/Y)-
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Proof. We have a distinguished triangle (%,,)

andLy /v is of perfect amplitude contained in-IL, 0]. So by Proposition 2.7 we
have a short exact sequence of abelian cone stacks

Nxy — Nx — F Ny
on X. So the claim is local irX and we may assume that we have a diagram

X l_) M// N M/
N !
Y — M,

where the square is cartesian, the vertical maps are smooth, the horizontal maps
are local immersiong, is regular andM is smooth. Then we have a morphism
of short exact sequences of conesXn

i*TM///Y — TM/‘X — TM|X
| l l

Nxm» — Cxmr — CymlX.
This is a local presentation for the short exact sequence
Nxyy — & — F ey

of cone stacks. O

4 Obstruction theory
The intrinsic normal sheaf as obstruction

A closed immersionT — T of schemes is called square-zero extensionith
ideal sheaf] if J is the ideal sheaf of in T andJ? = 0.
Let X be a Deligne-Mumford stacKiy its intrinsic normal sheaf. Lek — T
be a square zero extension with ideal she#andg : T — X a morphism. By
the functorialities of the cotangent complex we have a canonical homomorphism

gLy — Ly — L_'I_ (10)

/T
in D(r,,). Sincerz_lL;/T = J[1], this homomorphism may be considered as an
elementw(g) of Ext'(g*Ly,J). Recall the following basic facts of deformation
theory. An extensiory : T — X of g exists if and only ifw(g) = 0 and if
w(g) = 0 the extensions form a torsor under ‘Eg’fL;(,J) = Hom(g* (2x,J).

These facts can be interpreted in terms of the intrinsic normal shigabf
X. To do this, note that (10) gives rise to a morphism
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h/h%(L; 1) — h/h%g"Lx)
of cone stacks oveT. Since h1/h°(L;/T) = C(J) and h'/h%(g*Ly) = ¢"MNx
we have constructed a morphisab(g) : C(J) — ¢g*91x. We also consider
the morphism Qf) : C(J) — ¢*9x given as the composition a(J) — X
with the vertex ofg*9x. By Hom(ob(g),0(g9)) we shall denote the sheaf of
2-isomorphisms of cone stacks fraoh(g) to 0(g), restricted toT,,.

Given a square zero extension— T and a morphisng : T — X, we denote
the set of extensiong: T — X of g by Ext(g, T). These extensions in fact form
a sheaf oril,, which we shall denote Efg4, T).

Proposition 4.1 There is a canonical isomorphism
Ext(g, T) — Hom, (ob(y), 0(9))

of sheaves ofT,. In particular, extensions af to T exist, if and only ifob(g)
is Al-equivariantly isomorphic to @j.

Proof. Locally, we may embeX into a smooth schem® and call the em-
beddingi : X — M, the conormal shedf/I2. Then there always exist local
extensionh: T - M ofiog: T — M.

T — T
gl ‘ Ih
X —— M

Any suchh gives rise to a homomorphishi : g*I /1?2 — J, and hence to a real-
ization of ob(g) as the morphism of cone stacks induced by the homomorphism
of complexes

he: g"[1 12— i*On] — [J — O].

Note that ifh is another such extension, the difference betweamdh induces
a homomorphisny*i *f2y — J, which is in fact a homotopy from? to h?.

Now let g : T — X be an extension of. Then { - g)* = 0, so that we
get a homotopy from any locdl’ as above to 0, or in other words a local
Al-equivariant isomorphism frorab(g) to 0(g). Since these local isomorphisms
glue, we get the required map

Ext(g, T) — Hom(ob(g), 0(g)).

To construct the inverse, lét : ob(g) — 0O(g) be a 2-isomorphism of cone
stacks. Note tha# defines for every locah as above an extension &f to
h' i*2y — J (use Lemma 1.6). Changirg by h* definesh’ : T — M such
that (') = 0. Thush’ factors throughX, and in fact these locally definel
glue to give the required extensign T — X. 0O
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Proposition 4.2 There is a canonical isomorphism
Aut(0(g)) — Fom(g* 2, J)
of sheaves off,,.

Proof. Again, Lemma 1.6 shows that the automorphisms gj &¢e (locally) the
homomorphisms frong*i * 2y to J vanishing ong*I /12. The exact sequence

|/|2—>i*QM — x — 0
finishes the proof. See also Lemma 2.20

Corollary 4.3 The sheafHom(ob(g), 0(g)) is a formal .Zom/(g* {2x, J)-torsor.
So if ollg) = O0(g), the setHom(ob(g),0(g)) is a torsor under the group
Hom(g* £2x, J).

Note Combining this with Proposition 4.1 gives that ExtT) is a Homg* (2, J)-
torsor if the obstruction vanishes, reproving this fact from deformation theory
alluded to above.

Obstruction theories

Definition 4.4 Let E* € obD(%,,) satisfy &) (see Definition 2.3). Then a homo-
morphisme : E* — L% in D(%,,) is called anobstruction theoryor X, if h%(¢)

is an isomorphism and tt(¢) is surjective. By abuse of language we also say
that E* is an obstruction theory for X.

Note By Proposition 2.6 the homomorphisg: E* — Ly is an obstruction
theory if and only if

dY N — &
is a closed immersion, whee= h'/h%((E*)"). So if E* is an obstruction theory
and¢y C Ny is the intrinsic normal cone of, theng" (¢x) is a closed subcone
stack of ¢ of pure dimension zero. We sometimes aall(¢x) the obstruction
coneof the obstruction theory : E* — L.

Let E* € obE(%,,) satisfy &) and let¢ : E* — Ly be a homomorphism.
Let ¢ =h!/h%((E*)Y) and¢" : Nx — & the induced morphism of cone stacks.
If T — T is a square zero extension &fschemes with ideal sheaf and
g : T — X is a morphism, then we denote byw(g) the image of the obstruction
w(g) € Exti(g*Ly,d) in Ext'(¢*E*,J) and by" (ob(g)) the composition

C) 29 groy 2 g*e

of morphisms of cone stacks ovér
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Theorem 4.5 The following are equivalent.

1. ¢ : E* — Ly is an obstruction theory.

2. ¢V : Mx — ¢ is a closed immersion of cone stacks over X.

3. Forany(T,T, g) as above, the obstructiasi (w(g)) € Ext'(¢*E*, J) vanishes
if and only if an extensioly of g to T exists; and if¢*(w(g)) = 0, then the
extensions form a torsor und&xt(¢*E*,J) = Hom(g*h°(E*), J).

4. For any(T, T, g) as above, the sheaf of extensidha(g, T) is isomorphic to
the sheaHom(¢" (0b(g)), 0) of A-equivariant isomorphism from" (ob(g)) :
C@J) — g*¢tothe vertexd : C(J) — g*¢.

Proof. The equivalence of (1) and (2) has already been noted. In view of Propo-
sition 4.1 it is clear that (2) implies (4). The implication £4§3) follows from
Lemma 2.2. So let us prove that (3) implies (1).

To prove thath®(¢) is an isomorphism we can assume that SpedR is
an affine scheme (as the statement is local)Aléte anyR-algebra,M any A-
module. LetT = SpedA, T = SpecA & M), where the ring structure is given
by (@a,m)(@’,m’) = (aa’,am’ +a’m). Let g : T — X be the morphism induced
by the R-algebra structure oA. Then g extends toT, so there is a bijection
Homh(Ly) ® A,M) — Homh°(E*) ® A,M). This implies easily thah%(¢) is
an isomorphism.

The fact thath—%(¢) is surjective is local in thettale topology (and only
depends orr>_;E*). Assume therefore that is an affine scheme,: X — W
a closed embedding in a smooth affine schétheand letl be the ideal oX in
W. We can assume th&® = f * 2,y (see the proof of 2.5), th& ! is a coherent
sheaf, and thaE' = 0 fori # 0, —1.

We have to prove thaE~* — | /I2 is surjective; letM be its image. Let
T =X, M C | the inverse image dfl, andT c W the subscheme defined by
M let g : T — X be the identity. We can extengto the inclusiong : T — W.
Letm:1/12 — 1 /M be the natural projection. By assumptisrfactors viaE°
if and only if g extends to a mafy — X, if and only if rop=L: E~1 — | /M
factors viaE®. As 7o ¢~ is the zero map, it certainly factors. Thereforalso
factors. Consider now the commutative diagram with exact rows

E-! — E° — hO(E') — 0

¢l | |
/12 — E° — hYE*) — O

By an easy diagram chasing argument, the fact théctors viaE® together
with 7o ¢~1 = 0 impliesw = 0, hencep—1 : E~1 — 1 /12 is surjective. O

Obstructions for small extensions

Let Art be the category of local Artiniak-algebras with residue field, and
assume is algebraically closed. Amall extensiomvill be a surjective morphism
A — Ain Art with kernelJ isomorphic tok. A semi-smallextension is one
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with kernel isomorphic to &-vector space as a#&¥-module. A small extension
is calledcurvilinear, if it is isomorphic tok[t] /t"** — Kk[t]/t", for somen > 0.

Let F : Art — Setsbe a pro-representable covariant functor (in the sense of
[14]). An obstruction spacéor F is ak-vector spacd ? and, for any semi-small
extensionA’ — A with kernelJ, an exact sequence

FA) — F(A) 2 T2 .

This means that, for alf € F(A), £ is in the image ofF (A') if and only if
ob(¢) = 0. It is also required thatb is functorial in the obvious sense (see [11]).
We say thatv € T? obstructs a small extension’ A- A if ob(¢) = v ® w for
someé € F(A) and some nonzere € J.

Let X be a Deligne-Mumford staclp € X a fixed point with residue field
k. Let h, : Art — Setsbe the covariant functor associating to an objeaf Art
the set of morphisms Spéc— X sending the closed point tp. The functor
hp is pro-representable, and it is unchanged if we repkday any étale open
neighborhood op.

Let N, = p*91x, and letN, be the coarse moduli spaceNf. Note thatN, =
T¢ ,» SO thatN,, is in fact ak-vector space. Her& , = h'(p*Tx) = hi (p*Ly)"
are the ‘higher tangent spaces’ %fatp. Let C, C N, be the subcone coarsely
representingp*Cx. Proposition 4.1 implies the¥l, is an obstruction space for
hp. The following is probably known but we include a proof for lack of a suitable
reference; it is a version of Theorem 4.5 for semi-small extensions.

Lemma 4.6 The spaceN, is a universal obstruction space fog; that is, for
any other obstruction spadé, there is a unique injectioN, — T2 compatible
with the obstruction maps.

Proof. Let (U, W) be a local embedding fof nearp. Assume thaWw = SpedP,
U = SpeR = Sped®/I ; let m be the maximal ideal gp in P, and assume that
|  m. In this caseN, = (I /ml)".

If nis sufficiently large, the natural mdp'ml — (I +m")/(ml +m") is an
isomorphism; choose such an Let A, — A, be the extensio® /(ml +m") —
P/(I +m"), and leté, € hy(An) be the natural quotient map. ThenTif is any
obstruction space, the obstructiongpgives a linear mapl (ml )" — T2 which
must be injective. It is easy to check by functoriality that taking a different
does not change the map. But given any semi-small exterSion A, there
is always an extension of the tyg8, — A, mapping to it, so one can apply
functoriality again. O

Proposition 4.7 Everyv € N obstructs some small extension; it obstructs some
small curvilinear extension if and only if € Cp.

Proof. Keeping the notation of the previous proof, ketc Ny, and view it as
a P-linear mapl — k having ml in the kernel; we prove first that is an
obstruction for some small extension. Let= kerv, and choosen sufficiently
large, so that +m" #1 + m". Let A=P/I +m", andA’ = P/L + m"; choose
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¢ 1 R — A to be the natural surjection. L&t = ker(A' — A); J is naturally
isomorphic tol /L. Then o : 1 /ml — J is the obvious map, and the image of
the dual map i\, is the vector space generated dy

The projectivization ofC, is the fiber overp of the blowupW of W along
U. Every nontrivial curvilinear obstruction can be viewed as follows: extend the
map Spe&[t]/t""? — W to Sped[[t]]. This lifts to a map Spek[[t]] — W,
and the obstruction is (up to scalar) the image of 0 in &peg]. The proof then
follows the argument of Proposition 20.2 in [8].0

5 Obstruction theories and fundamental classes
Virtual fundamental classes

As usual, letX be a Deligne-Mumford stack ovéx.

Definition 5.1 We call an obstruction theory E— Ly perfect, if E* is of perfect
amplitude contained ifi—1, 0].

Now assume thaX is separated (or, more generally, satisfies the condition
of Vistoli in [15]). We shall denote by (X) the rational Chow group of cycles
of dimensionk on X modulo rational equivalence tensored with(see [ibid]).

We shall also use the corresponding bivariant groAligX — Y), for morphisms
X — Y of separated Deligne-Mumford stacks.

Let E* be a perfect obstruction theory fof, and let¢x — h!/h%(EY) be
the intrinsic normal cone. We call &* the virtual dimensionof X with respect
to the obstruction theorf*. Recall that rkE* = dimE® —dimE 1, if locally E*
is written as a complex of vector bundleg{* — EO°]. This is a well-defined
locally constant function oX. We shall assume that the virtual dimensionXof
with respect toE* is constant, equal ta.

To construct thevirtual fundamental claspX, E*] € A,(X) of X with respect
to the obstruction theorf*, we would like to simply intersect the intrinsic
normal cone¢y with the vertex (zero section) df!/h°(E"). Sinceh!/h%(EY)
is smooth of relative dimensionn over X, the codimension oK in h/h%(EY)
is —n, so that the dimension of the intersectiondyf with X is 0— (—n) = n.
Unfortunately, this construction would require Chow groups for Artin stacks,
which we do not have at our disposal. This is why we shall make the assumption
that E* has global resolutions.

Definition 5.2 Let F* = [F~1 — F°] be a homomorphism of vector bundles on
X considered as a complex 6k-modules concentrated in degreeg and0. An
isomorphism B — E* in D(%,,) is called aglobal resolution of E*.

Let F* be a global resolution dE*. Then

hi/hOEY) = [F ' /F°"],
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so thatF; = F~1" is a (global) presentation df'/h%(EY). Let C(F*) be the
fibered product
C(F*) — Fi

1 |

Cx — h/hOEVY).
ThenC(F*) is a closed subcone of the vector bunfile We define thevirtual
fundamental clasfX, E*] to be the intersection of (F*) with the zero section
of F1. Note thatC(F*) — ¢&x is smooth of relative dimension Ay (where
Fo = FOV), so thatC(F*) has pure dimension g and [X, E*] then has degree

rkFo —rkFy =rkE®* =n.

Proposition 5.3 The virtual fundamental classX[E*] is independent of the
global resolutionF* used to construct it.

Proof. Let H* be another global resolution d&*. Without loss of generality
assume thaH* — E* andF* — E* are given by morphisms of complexes.
Then we get an induced homomorphigt? © F° — E°. So by constructing the
cartesian diagram
K1 — HgEF°
! 1

E-! — EO,

and lettingk® = H9 @ FO, we get a global resolutiok * of E* such that both
H* andF* map toK* by a strict monomorphism. So it suffices to compare
with K*. Dually, we have an epimorphisi; — F;. Consider the diagram

X -% CH*) — C(F?)

! ! !

x % K % Fy
in which both squares are cartesian. Note thds smooth. The virtual funda-
mental class using* is equal to

(a0 0)[C(F)] = 0'a'[C(F*)] = O'[C(H )],
which is the virtual fundamental class usiflg. O

Example If X is a complete intersection, ther is of perfect amplitude con-
tained in [-1, 0], so thatLy itself is a perfect obstruction theory. Any embedding
of X into a smooth Deligne-Mumford stack gives rise to a global resolution of
Ly.The virtual fundamental clasX[ L] thus obtained is equal teX[, the ‘usual’
fundamental class.

Remark 5.4 (Virtual structure sheaves) Let X be a Deligne-Mumford stack
and let¢ — ¢ be a closed subcone stack of a vector bundle stack. Then we
define a graded commutative sheaf of coheréptalgebras? ¢ as follows.

If ¢ ¥ [E;1/Eo], then¢ induces a con€ in E; and we set
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.0 - >
/(LQ) = ‘yori " (KC ) ('//X)v

where we think of¢’ as anc’,-algebra via the zero section &. Standard
arguments show that

Ce.e) =P Ay
i

is independent of the choice of presentati®n= [E;/Ey]. Hence the locally
defined sheaves glue, giving rise to a globally defined sheaf.

If ¢ =¢x, E* is a perfect obstruction theory of and ¢ = h/h%(E*"), we
call ¢ ) thevirtual structure sheadf X with respect to the obstruction theory
E*, denoted®x e+). This seems to be the virtual structure sheaf proposed by
Kontsevich in [12].

If one has onX a homological Chern character: Ko(X) — A.(X) one can
define the virtual fundamental class ¥fwith respect toe* by

[X,E*] = td(E*) N 7(C(x £+))-

This agrees with the above definition using global resolutions if they exist. In
the absence of a general Riemann Roch theorem, we rather assume the existence
of global resolutions.

Basic properties

Proposition 5.5 (No obstructions) If E* is perfect,h°(E*) is locally free and
h1(E*) = 0, thenX is smooth, the virtual dimension of with respect toE* is
dim X and the virtual fundamental class [E°] is just [X], the usual fundamental
class. O

Proposition 5.6 (Locally free obstructions) Let X be smooth and&* a perfect
obstruction theory foX. Thenh(E*Y) is locally free and the virtual fundamentall
class is

[X,E*]=c (h'(E*Y)) - [X],
wherer = rkh(E*Y).

Proof. To see this, note that iF* is a global resolution oE*, thenC(F*) =
im(Fo — Fy). O

Proposition 5.7 (Products) Let E — Lx be a perfect obstruction theory fot
andF — Ly a perfect obstruction theory for. ThenLx«y = Lx H Ly. The
induced homomorphisrk H F — Lx H Ly is a perfect obstruction theory for
X x Y. If E andF have global resolutions, then so ddesi F and we have

X xY,EBHF]=[X,E] x[Y,F]

in Ace+kr (X < Y).
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Proof. The statement about cotangent complexes is [10], Chapitre II, Corollaire
3.11. To prove the rest, use Proposition 3.131

Consider a cartesian diagram of Deligne-Mumford stacks

X LoX
gl L (11)
Y 2y,

wherew is a local complete intersection morphism. [Eet— Ly andF — Ly
be perfect obstruction theories fidr and X', respectively.

Definition 5.8 A compatibility datum (relative tov) for E and F is a triple
(¢, %, x) of morphisms in %) giving rise to a morphism of distinguished tri-
angles
vE -5 F L gy S wEQ]
! 1 ! !
ULy — Ly — Lx//x — U*Lx[l]
Given a compatibility datum, we call E and dompatible (over v).

Assume thaE andF are endowed with such a compatibility datum. Then
we get (Proposition 2.7) a short exact sequence of vector bundle stacks

g*hl/hO(TY‘,/Y) — h'/h%(FY) — u*hl/h%(EY)
which we shall abbreviate by
TNy yy — § - ure.

If v is a regular local immersion, theXy. v = Ny, y is the normal bundle
of Y’ in Y. Its pullback toX’ we shall denote byN.

Lemma 5.9 If Y andY’ are smooth and a regular local immersion, then there
is a (canonical) rational equivalenggY’, X) € W,(N x ) such that

8ﬁ(Y’,X) = [d)*cu*k’:x/k’:x] - [N X Q:X/]'

Proof. Let X — M be a local embedding, wheké is smooth. We get an induced
cartesian diagram
X’ — X

which we enlarge to

NxxC — u'C — C
! ! !
N — X/ 4 X
! il Li

Ny oy xM 25 Y/ xM 5 Y x M,
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whereC is the normal cone oK in Y x M. As in Sect. 3 we have a canonical
rational equivalenc@(Y’ x M, X) € W, (N xx C) such that

IBY" x M, X) =[Cy-c/c] =[N x Cxrjyrxm]-

By Proposition 3.53(Y’ x M, X) is invariant under the action & x u*i*Ty «um

onN xx C. So it descends thl xx €x. In particular,3(Y’ x M, X) is invariant
under the subshedf x j*Ty/xu and thus descends 8 x [uU*C/j* Ty xm]-

Note that U*C/j*Ty xm] = § X €x, Which is a closed subcone stack ®f

So pushing forward via this closed immersion, we get a rational equivalence on
N x § which we denote by3(Y’, X). We have

aﬂ(Y/,X) = [¢*CU*€x/€x] - [N X Q:X’]

as required. Now use Proposition 3.4 to show th@t’, X) does not depend on
the choice of the local embedding — M. So even if no global embedding
exists, the locally defined rational equivalences glue, proving the lemma.

Proposition 5.10 (Functoriality) Let E andF be compatible perfect obstruction
theories, as above. E andF have global resolutions then

v'[X,E] = [X',F]
holds in the following cases.

1. v is smooth,
2. Y andY are smooth.

Proof. First note that one may choose global resolutides |+ E;] of EV and
[Fo — F4] of FV together with a pair of epimorphismg : Fo — U*Ep and
¢1 : F1 — U*E; such that

Fo ﬂ U*Eo

! !

Fl & U*El

commutes. LettingG; be the kernel ofy; we get a short exact sequence of
homomorphisms of vector bundles

0 — G — Fp — UE — O

! ! !

O — G — F — UuUE — O
The induced short exact sequence
[G1/Go] — [F1/Fo] — [U"E1/U"Eq]

of vector bundle stacks is isomorphic 9y, vy — § — ¢ We letC; =
Cx X¢ E1 andD; = ¢x/ Xz F1. Then P(,E] = 0:51[(:1] and D(/, F] = O;:l[Dl],
where @, and @, are the zero sections & andF1, respectively.

If vis smooth, then by Proposition 3.14 the diagram
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Cxr — U*Cx

! !
F — u*¢

is cartesian, which implies that

D; — u*C

! !

Fr, — Uu*E;
is cartesian. Hence},0. [u*Cy] = O [D1] and we have
V[X,E] = v'0g[Ci]
0-g,[UCa]

Ok, [Da]
[X",F].

If Y andY are smooth, let us first treat the case thas a regular local
immersion. Then we may choos$g as the fibered product

F]_ — E]_

! !

3 2 e

Lifting the rational equivalencg(Y’, X) of Lemma 5.9 toN x F; we get that
[N X Dl] = ¢*[CU*C1/C1]
in A.(N x F1). Then we have

X", F] OF,[D1]
= Oi\lel[N X Dl]
= Onur,¢'[Cu-ci/cl
- 0!N><u*E1[Cu*Cl/C1]
= 0.gv'[Ci]
= v'0g[Ci]
= '[X,E].
In the general case facteras
Y Dy xy By
Then Diagram 11 factors as
X' — Y xX — X
! 1 !
vy vy By,
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SinceY’ is smooth it has a canonical obstruction theory, nanf@ly. As ob-
struction theory onY’ x X take f2y B E. Then 2y, B E is compatible with
E overp andF is compatible with{?y, B E over I,. So combining Cases (1)
and (2) yields the result. O

6 Examples
The basic example

Assume that

J

X ——
gl L
Yy 5w

is a cartesian diagram of schemes, ¥MandW are smooth and thatis a regular
embedding. LeE* be the compIeXg{*NY/\,\,v — j*f2v] (in degrees—1 and 0),
where the map is given by pulling back ¥ and composing\IY/WV — 1"y
with f*f2y — f2y. The complexE* has a natural morphism tby, induced
by ¢*Ly — Ly andj*Ly — Ly (note thatE* is the cokernel ofg*i*Ly, —

i *Ly @ gLy, where the first component is the negative of the canonical map).
This make<E* into a perfect obstruction theory fof; the virtual fundamental
class K,E*] is justi'[V] as defined in [6], p. 98. The construction also works

in caseX, Y, V andW are assumed to be just Deligne-Mumford stacks.

Fibers of a morphism between smooth stacks

Letf : V — W be a morphism of algebraic stacks. We shall assume\thand
W are smooth ovek and thatf has unramified diagonal, so thdtis a relative
Deligne-Mumford stack oveW. Let w : Spedk — W be ak-valued point ofW
and letX be the fiber off overw. In this situationX has an obstruction theory
as follows.

Choose a smooth morphisﬁ — W, with W a scheme, and a lifting :
Spek — W of w (assumek algebraically closed). Le¥ be the fiber product
V xw W; by the assumptiong is a smooth Deligne-Mumford stack. Theh
is isomorphic to the fiber oveb of V. — W, hence it has an obstruction theory
as above.

To check that the obstruction theory so defined does not depend on the choices
made, it is enough to compare two different ones induced by a smooth morphism
of schemedV’ — W; this is then a straightforward verification. Similarly, one
generalizes to the case of arbitrary ground field

See Example for an alternative construction.
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Moduli stacks of projective varieties

Let M and X be Deligne-Mumford stacks. Let: M — X be a flat, relatively
Gorenstein projective morphism: by this we mean that it has constant relative
dimension and that the relative dualizing compcl&z]{;f/X =w is a line bundle in
degree— dimM /X. For G* € Dgc(ﬂ“)“(), one hag'G* = p*G* ® w. For every

F* € Dge(m) andG* € Dgc(@), and for every integek, there are canonical
isomorphisms Et (F*,p'G*) — Extt, (Rp.F*,G*). (See [9], Sect. VII.4.)

Lemma 6.1 Letp : M — X be a flat, projective, relatively Gorenstein morphism
of Deligne-Mumford stacks. For any cartesian diagram

N 2. M
ql Ip (12)
T LoX,

for anyF* € Dg(?m) andG* € Dgc((f‘q‘), there is a canonical isomorphism
Extf, (9°F*,q°G") — Extt, (f*(Rp.(F* © ), G*).
Proof. Sincep is flat, we have that
Exf, (9°F*,q"G") = Ext;,, (F*,Rg.q"G") = Ex{, (F*,p"REL.G").
Tensoring withw induces isomorphisms

Exts, (F*,p*RE.G*) — Ext, (F* ®@w,p'Ri.G*)
Ext, (Rp.(F* ® w), Rf,G*)
Ext, f"Rp.(F* ®w),G*). O

Define the compleE* on X to beRp, (L}, /X ®w)[—1]. The Kodaira-Spencer
mapLy x — p*Lx[1] induces a morphismg : E* — L.

Proposition 6.2 Let p : M — X be a flat, projective, relatively Gorenstein
morphism of Deligne-Mumford stacks, and assume that the fahilg universal
at every point ofX (e.g.,X is an open set in a (fine) moduli stack akdis the
universal family). Thenp : E* — Ly is an obstruction theory faxX.

Proof. Let T be a schemdf, : T — X a morphism, and consider the cartesian
diagram (12). T — T is a square zero extension with ideal shezf the
obstruction to extendin®y to a flat family overT lies in Exlz(L,'\,/T, q*7), and
the extensions, if they exist, are a torsor underl(EDn/T,q*jZ). The fact that
the family M is universal at every point implies that the fiberspohave finite
and reduced automorphism group, hebcesatisfies %).

The mapE* — Ly induces morphisms

d s ExtNETLy, 7) — ExtCNEE®, 7) = Ext (Ly 1,97 7).



The intrinsic normal cone 83

where the latter equality is Lemma 6.1 together with the factllng{, =g* '—ny

asp is flat. The universality oM means that extendiny to a family overT is
equivalent to extendinf to a morphism toX defined onT. Hence by Theorem

4.5, ¢ is an obstruction theory foX. O

Remark If p is smooth of relative dimension 2, thenE* is a perfect obstruction
theory.

Spaces of morphisms

Let C andV be projectivek-schemes. LeK = Mor(C, V) be thek-scheme of
morphisms fromC to V (see [7]). Leff : C x X — V be the universal morphism
andr : C x X — X the projection. By the functorial properties of the cotangent
complex we get a homomorphism

'Ly — Lex — L.C><X/C
and a homomorphism
L — Leax/c

The latter is an isomorphism so that we get an induced homomorphism

e:f*Ly — 7"Ly.
Assume thaC has a dualizing complexc, and let

E* =Rm.(f*Ly ® w) = (Rr.(F*Ty))".

As in the previous example induces a morphism

(") (E* — Ly,

Proposition 6.3 Assume thatC is Gorenstein. Then the homomorphisim:=
7.(e¥)" is an obstruction theory foX. If C is a curve andV is smooth then
this obstruction theory is perfect.

Proof. Let T be an affine scheme,: T — X a morphism, 7 a coherent sheaf
onT;letp: C xT — T be the projectionh : C x T — V the morphism
induced byg.

Applying Lemma 6.1, one gets

Extt, ., (L. p* 7) = Extt (0°E". 7).

Apply now Theorem 4.5, more precisely the equivalence between (1) and (3).
Choose any square zero extensioof T with ideal sheafZ. Theng extends to
g:T — X ifand only if h extends tch : C x T — V, if and only if p*w(g) is

zero in ExtCXT(h*L\',, p* 7). The extensions, if they exist, form a torsor under
HOWC xT(h*L\./ ) p*7) 0
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7 The relative case
Bivariant theory for artin stacks

For what follows, we need a little bivariant intersection theory for algebraic
stacks that are not necessarily of Deligne-Mumford type.

For simplicity, let us assume thét: X — Y is a morphism of algebraic
k-stacks which is representable. This assumption implies that whenever

X — Y/
! 1
X - v

is a cartesian diagram aM is a Deligne-Mumford stack satisfying the condition
needed to define its Chow group (see [15]), th€nis of the same type. The
following remarks can be generalized to any morphisgatisfying this property,
e.g. anyf which has finite unramified diagonal.

For such arf : X — Y we define bivariant group&*(X — Y) by using the
same definition as Definition 5.1 in [15]. Then just as in [ibid.] one proves that
the elements oA*(X — Y) act on Chow groups of Deligne-Mumford stacks.

The same definition as [ibid.] Definition 3.10 applies in chseX — Y is
a regular local immersion, and defines a canonical elenfént [A*(X — Y)
whose action on cycle classes is denotedf byThis is justified, since Theo-
rems 3.11, 3.12, and 3.13 from [ibid.] hold with the same proofs in this more
general context. In factf] even commutes with the Gysin morphism for any
other local regular immersion of algebraic stacks.

Similarly, if f : X — Y is flat, flat pullback of cycles defines a canonical
orientation f] € A*(X —Y).

The relative intrinsic normal cone

We shall now replace the base Speay an arbitrary smooth (or more generally
pure dimensional, but always of constant dimension) algetkatackY (not
necessarily of Deligne-Mumford type). We shall consider algebraic sbaakser
Y which are of relative Deligne-Mumford type ov¥r, i.e. such that the diagonal
X — X xy X is unramified. This assures thla‘t(L;(/Y) =0, for alli > 0 (i.e.
hi(Ly ,v) = 0), so thatLy v satisfies Conditions).

The relative intrinsic normal shealy /v is defined as

Nx/y = hl/ho(Ti/y)

Using local embeddings of into schemes smooth ov¥r, we construct as in the
absolute case a subcone statky C 9y called therelative intrinsic normal
coneof X overY. If n=dimY, then¢y v is of pure dimensiom.
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The definition of arelative obstruction theorys the same as Definition 4.4,
with L; replaced byLs . As in the absolute case the relative intrinsic normal
cone embeds as a closed subcone stack of a vector bundle stack

¢x, v C h*/h°EY),

if E is a perfect relative obstruction theory. (Note that ‘perfect’ means ‘absolutely
perfect’.)

So let E be a perfect obstruction theory fo¢ over Y admitting global
resolutions. IfX is a separated Deligne-Mumford stack then we get a virtual
fundamental classX, E°] € An+ke(X) by ‘intersecting¢y with the vertex of
h1/h%(EY)’ as in the discussion preceding Proposition 5.3.

Consider the following diagram, wheré and Y’ are smooth of constant
dimensionw has finite unramified diagonal andand X’ are separated Deligne-
Mumford stacks.

X 4X
! ! (13)
Yy 2y

Proposition 7.1 There is a natural morphism
[N Q:X//Y' — Q:x/y Xy Y’

If (13) is cartesian, then is a closed immersion. If, moreovaer,is flat, thena
is an isomorphism.

Proof. Both statements follow immediately from the corresponding properties of
normal cones for schemes.O

Proposition 7.2 (Pullback) Let E — Lx,y be a perfect obstruction theory for
X overY. If (13) is cartesian thewm*E is a perfect obstruction theory fot’
over Y'. If E has global resolutions so doe$E and for the induced virtual
fundamental classes we have

v'[X,E] = [X',u*E],
at least in the following cases.

1. v is flat,
2. v is a regular local immersion.

Proof. Let E-! — E° be a global resolution dE* andC the cone induced by
Cx,y in Ey. Letu*E; = E/, andD the cone induced by v in E;.

If v is flat we havegy. v, = v*€x vy and hencédd =v*C by Proposition 7.1
and the statement follows from the fact thatis a bivariant class; in this case
thatv' commutes with P, where 0 :X — E; is the zero section.

If v is a regular local immersion, lé&d = Ny.,y and use Vistoli’s rational
equivalence

6(Y/,X) S W*(N Xy C)

(see Proposition 3.3) to prove the{C] = [D]. Then proceed as before. O
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The following are relative versions of the basic properties of virtual funda-
mental classes from Sect. 5.

Proposition 7.3 (Locally free obstructions) Let E* be a perfect relative ob-
struction theory fofX overY Assume thaE* has global resolutions anXl is a
separated Deligne-Mumford stack, so that the virtual fundamental cka$s°]
exists.

1. If h~1(E*) = 0, thenX is smooth ovelY and [X,E°*] =[X].
2. If X is smooth ovely, thenh(EV) is locally free and X, E*] = ¢, (h}(E"))-
[X], wherer = rkh'(EY).

Proof. The proofs are the same as in the absolute case (Propositions 5.5 and
5.6). O

Proposition 7.4 (Products) Let E be a perfect relative obstruction theory #6r
overY andF a perfect relative obstruction theory ff overY’. ThenE B F
is a perfect relative obstruction theory férx X’ overY x Y’. If E andF have
global resolutions anck and X’ are separated Deligne-Mumford stacks, then
E @ F has global resolutions anl x X’ is a separated Deligne-Mumford stack
and we have

[X x X' EBF]=[X,E] x [X',F]

iN Adimy+dimy+rkE+rkF (X X X').

Let E be a perfect relative obstruction theory féroverY andF a perfect
relative obstruction theory foX’ overY. Letv : Z’ — Z be a local complete
intersection morphism oY -stacks that have finite unramified diagonal oYer
Let there be given a cartesian diagram

u

X — X
gl Lt
z Xz

of Y-stacks. Thert andF arecompatible over if there exists a homomorphism
of distinguished triangles

ue — F — gLz — u*E[1]

! ! ! !

U'lx,y — Lxy — Lxyx — ULxy[l]
in D(%).
Proposition 7.5 (Functoriality) If E andF are compatible over, then
v'[X,E] = [X',F],
at least ifv is smooth orZ’ andZ are smooth ovey.

Proof. The proof is the same as that of Proposition 5.1@
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Example Consider a cartesian diagram

X
gl ln
y 5w

of algebraic stacks, wherieandj are local immersions and has unramified
diagonal. We have a canonical homomorphism

¢ )" Lbvyw — Lx/v,

which makes *Ly ,w a relative obstruction theory fof overY. To see this, it
suffices to prove that—1(F*) = h°(F*) = 0, whereF* is the cone ofp. But F*
is isomorphic to the cone of the homomorphism

g Ly yw — Lxv,

so this is indeed true. _
Now if V andW are smooth, theh'(Ly ,w) =0 for alli # —1,0 andj *Ly )w
is a perfect obstruction theory. In particular, we get a virtual fundamental class

[X,)"Lv w] € Adimy+dimv —dimw (X),

if Y is pure dimensional an¥ is a separated Deligne-Mumford stack.

If, in addition, i is a regular local immersion with normal bundig v, the
normal coneCy y of X in V is a closed subcone gf'Ny  and intersecting it
with the zero section 0 of*Ny /x gives a class

0'[Cx v] € Adimy +dimv —dimw (X).

The proof that
0'[Cxv]=[X,] "Ly, wl
is similar to the proof of Proposition 7.2.

References

1. Artin, M.: Versal deformations and algebraic stacks. Invent. math.165-189, 1974

2. Artin, M., Grothendieck, A., Verdier, J.L.: Borie des Topos et Cohomologie Etale deséBuhs,
SGAA4. Lecture Notes in Mathematics Nos. 269, 270, 305. Springer, Berlin, Heidelberg, New
York, 1972, 73

3. Behrend, K.: Gromov-Witten invariants in algebraic geometry. (To appear) in Invent. math.

4. Behrend, K., Manin, Yu.: Stacks of stable maps and Gromov-Witten invariants. (To appear) in
Duke Mathematical Journal

5. Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Publications
Mathematiques, Institut des Haut&sudes Scientifiques6, 75-109, 1969

6. Fulton, W.: Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge
Band 2. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984

7. Grothendieck, A.: Techniques de construction ébtbmes d’existence erégnétrie algebrique
IV: Les sctemas de Hilbert. &minaire Bourbaki, 13e ake (221), 1960-61



88

10.

11.
12.

13.
14.

15.

K. Behrend, B. Fantechi

Harris, J.: Algebraic Geometry—A First Course. Graduate Texts in Mathematics No. 133.
Springer-Verlag, New York, 1992

Hartshorne, R.: Residues and Duality. Lecture Notes in Mathematics No. 20. Springer, Berlin,
Heidelberg, New York, 1966

lllusie, L.: Complexe cotangent eéfdrmations I, 1. Lecture Notes in Mathematics Nos. 239,
283. Springer, Berlin, Heidelberg, New York, 1971

Kawamata, Y.: Unobstructed deformations, Il. J. Algebraic Geométr377—279, 1995
Kontsevich, M.: Enumeration of rational curves via torus actions. In The Moduli Space of
Curves, Progr. Math. 129, Birluser, Boston, 1995, 335-368

Laumon, G.: Champs d@friques. Preprint, Universitde Paris-Sud, Orsay, 1988

Schlessinger, M.: Functors of Artin rings. Transactions of the Amer. Math. 52(¢.208-222,

1968

Vistoli, A.: Intersection theory on algebraic stacks and on their moduli spaces. Invent. math.,
97, 613-670, 1989



