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Abstract. Let X be an algebraic stack in the sense of Deligne-Mumford. We
construct a purely 0-dimensional algebraic stack overX (in the sense of Artin),
the intrinsic normal coneCX . The notion of (perfect) obstruction theory forX is
introduced, and it is shown how to construct, given a perfect obstruction theory
for X, a pure-dimensionalvirtual fundamental classin the Chow group ofX.
We then prove some properties of such classes, both in the absolute and in the
relative context. Via a deformation theory interpretation of obstruction theories
we prove that several kinds of moduli spaces carry a natural obstruction theory,
and sometimes a perfect one.
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0 Introduction

Moduli spaces in algebraic geometry often have an expected dimension at each
point: for instance, the moduli space of smooth complex projective surfaces with
ample canonical class has expected dimensionh1(V ,TV )− h2(V ,TV ) at a point
[V ]. In this example, the expected dimension is constant on connected compo-
nents, since it is equal to−χ(V ,TV ). In some cases the dimension coincides
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with the expected dimension, in others it does so under some genericity assump-
tions. However, it can happen that there is no way to get a space of the expected
dimension; it is also possible that special cases with bigger dimension are easier
to understand and to deal with than the generic case.

When we have a moduli spaceX which has a well-defined expected di-
mension, it can be useful to construct in its Chow ring a class of the expected
dimension. By integrating certain cohomology classes over it, one obtains nu-
merical invariants. The main examples we have in mind are Donaldson theory
(with X the moduli space of torsion-free, semi-stable sheaves on a surface) and
Gromov-Witten invariants (withX the moduli space of stable maps from curves
of genusg to a fixed projective variety). In this paper we deal with the problem
of defining such a class in a very general set-up. The construction is divided into
two steps.

First, given any Deligne-Mumford stackX, we associate to it an algebraic
stackCX over X of pure dimension zero, itsintrinsic normal cone. This has
nothing to do withX being a moduli space; it is just an intrinsic invariant,
whose structure is related to the singularities ofX (see for instance Proposition
3.12).

Then, we define the concept of an obstruction theory and of a perfect obstruc-
tion theory forX. To say thatX has an obstruction theory means, very roughly
speaking, that we are given locally onX an (equivalence class of) morphisms of
vector bundles such that at each point the kernel of the induced linear map of
vector spaces is the tangent space toX, and the cokernel is a space of obstruc-
tions. Usually, ifX is a moduli space then it has an obstruction theory, and if
this is perfect then the expected dimension is constant onX. Once we are given
an obstruction theory, with the additional (technical) assumption that it admits
a global resolution, we can define a virtual fundamental class of the expected
dimension.

An application of our results is given in a paper [3] by the first author. There
Gromov-Witten invariants are constructed for any genus, any target variety and
the axioms listed in [4] are verified.

We now give a more detailed outline of the contents of the paper. In the
first section we recall what we need about cones and we introduce the notion of
cone stacks over a Deligne-Mumford stackX. These are Artin stacks which are
locally the quotient of a cone by a vector bundle acting on it. We call a cone
abelian if it is defined as Spec SymF , whereF is a coherent sheaf onX.
Every cone is contained as a closed subcone in a minimal abelian one, which we
call its abelian hull. The notions of being abelian and of abelian hull generalize
immediately to cone stacks.

In the second section we construct, for a complexE• in the derived category
D(OX ) which satisfies some suitable assumptions (which we call Condition (?),
see Definition 2.3), an associated abelian cone stackh1/h0((E•)∨). In particular
the cotangent complexL•X of X satisfies Condition (?), so we can define the
abelian cone stackNX := h1/h0((L•X )∨), the intrinsic normal sheaf.
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The name is motivated in the third section, whereNX is constructed more
directly as follows:étale locally onX, embed an open setU of X in a smooth
schemeW, and take the stack quotient of the normal sheaf (viewed as abelian
cone) NU/W by the natural action ofTW |U . One can glue these abelian cone
stacks together to getNX . The intrinsic normal coneCX is the closed subcone
stack ofNX defined by replacingNU/W by the normal coneCU/W in the previous
construction.

In the fourth section we describe the relationship between the intrinsic normal
sheaf of a Deligne-Mumford stackX and the deformations of affineX-schemes,
showing in particular thatNX carries obstructions for such deformations. With
this motivation, we introduce the notion of obstruction theory forX. This is
an objectE• in the derived category satisfying Condition (?), together with a
morphismE• → L•X , and such that the induced mapNX → h1/h0((E•)∨) is a
closed immersion.

An obstruction theoryE• is called perfect ifE = h1/h0((E•)∨) is smooth
over X. So we have a vector bundle stackE with a closed subcone stackCX ,
and to define the virtual fundamental class ofX with respect toE• we simply
intersectCX with the zero section ofE. This construction would require Chow
groups for Artin stacks, which we do not have at our disposal. There are several
ways around this problem. We choose to assume thatE• is globally given by a
homomorphism of vector bundlesF−1 → F 0. ThenCX gives rise to a coneC
in F1 = F−1∨ and we intersectC with the zero section ofF1.

Another approach, suggested by Kontsevich [12], is via virtual structure
sheaves (see Remark 5.4). The drawback of that approach is that it requires
a Riemann-Roch theorem for Deligne-Mumford stacks, for which we do not
know a reference.

In the sixth section we give some examples of how this construction can
be applied in some standard moduli problems. We consider the following cases:
a fiber of a morphism between smooth algebraic stacks, a moduli space for
projective varieties and the scheme of morphisms between two given projective
schemes. We have often preferred to strengthen the assumptions in order to
simplify the construction.

In the seventh section we give a relative version of the intrinsic normal cone
and sheafCX/Y andNX/Y for a morphismX → Y with unramified diagonal of
algebraic stacks; we are mostly interested in the case whereY is smooth and
pure-dimensional, which preserves many good properties of the absolute case
(e.g.,CX/Y is pure-dimensional). In concrete cases, a relative obstruction theory
is often easier to deal with, or more natural to consider, than an absolute one.
This is the case for Gromov-Witten invariants (see [3]).

The starting point for this work was a talk by J. Li at the AMS Summer Insti-
tute on Algebraic Geometry, Santa Cruz 1995, where he reported on joint work
in progress with G. Tian. Their construction, in the complex analytic context,
was based on the existence of the Kuranishi map; by using it they defined, under
suitable assumptions, a pure-dimensional cone in some bundle and got classes
of the expected dimension by intersecting with the zero section.
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Our construction owes its existence to theirs; we started by trying to under-
stand and reformulate their results in an algebraic way, and found stacks to be a
convenient, intrinsic language. In our opinion the introduction of stacks is very
natural, and it seems almost surprising that the intrinsic normal cone was not
defined before. We find it important to separate the construction of the cone,
which can be carried out for any Deligne-Mumford stack, from its embedding
in a vector bundle stack. We work completely in an algebraic context; of course
the whole paper could be rewritten without changes over the category of analytic
spaces.

Acknowledgments.This work was started in the inspiring atmosphere of the Santa
Cruz conference. A significant part of it was done during the authors’ stay at the
Max-Planck-Institut f̈ur Mathematik in Bonn, to which both authors are grateful
for hospitality and support. The second author is a member of GNSAGA of CNR.

Notations and conventions

Unless otherwise mentioned, we work over a fixed ground fieldk.
An algebraic stackis an algebraic stack overk in the sense of [1] or [13].

Unless mentioned otherwise, we assume all algebraic stacks (in particular all
algebraic spaces and all schemes) to be quasi-separated and locally of finite type
over k.

A Deligne-Mumford stackis an algebraic stack in the sense of [5], in other
words an algebraic stack with unramified diagonal. For a Deligne-Mumford stack
X we denote byXfl the big fppf-site and byXét the smallétale site ofX. The
associated topoi of sheaves are denoted by the same symbols.

Recall that a complex of sheaves of modules isof perfect amplitude contained
in [a, b], wherea, b ∈ Z, if, locally, it is isomorphic (in the derived category)
to a complexEa → . . .→ Eb of locally free sheaves of finite rank.

1 Cones and cone stacks

Cones

To fix notation we recall some basic facts about cones.
Let X be a Deligne-Mumford stack. Let

S =
⊕
i≥0

Si

be a graded quasi-coherent sheaf ofOX -algebras such thatS0 = OX , S1 is coherent
andS is generated locally byS1. Then the affineX-schemeC = SpecS is called
a coneover X. A morphismof cones overX is an X-morphism induced by a
graded morphism of graded sheaves ofOX -algebras. Aclosed subconeis the
image of a closed immersion of cones. If
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C2

↓
C1 −→ C3

is a diagram of cones overX, the fibered productC1 ×C3 C2 is a cone overX.
Every coneC → X has a section 0 :X → C , called thevertexof C , and an

A1-action (or a multiplicative contraction onto the vertex), that is a morphism

γ : A1 × C −→ C

such that
1.

C
(1,id)−→ A1 × C

id ↘ ↓ γ

C

commutes,
2.

C
(0,id)−→ A1 × C

0 ↘ ↓ γ

C

commutes,
3.

A1 × A1 × C
id×γ−→ A1 × C

m×id ↓ ↓ γ

A1 × C
γ−→ C

commutes, wherem : A1 × A1 → A1 is multiplication,m(x, y) = xy.

The vertex ofC is induced by the augmentationS → S0, theA1-action is given
by the grading ofS. In fact, the morphismS → S[x] giving rise to γ maps
s ∈ Si to sxi .

Note that a morphism of cones is just a morphism respecting 0 andγ.

Abelian cones

If F is a coherentOX -module we get an associated cone

C(F ) = Spec Sym(F ).

For anyX-schemeT we have

C(F )(T) = Hom(FT ,OT ),

soC(F ) is a group scheme overX. We call a cone of this form anabelian cone.
A fibered product of abelian cones is an abelian cone. IfE is a vector bundle
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over X, thenE = C(E ∨), whereE is the coherentOX -module of sections ofE
andE ∨ its dual.

Any coneC = Spec
⊕

i≥0 Si is canonically a closed subcone of an abelian
cone A(C) = Spec SymS1, called theassociated abelian coneor the abelian
hull of C . The abelian hull is a vector bundle if and only ifS1 is locally free.
Any morphism of conesφ : C → D induces a morphismA(φ) : A(C) →
A(D), extendingφ. ThusA defines a functor from cones to abelian cones called
abelianization. Note thatφ is a closed immersion if and only ifA(φ) is.

Lemma 1.1 A coneC over X is a vector bundle if and only if it is smooth over
X.

Proof. Let C = Spec
⊕

i≥0 Si , and assume thatC → X has constant relative
dimensionr . ThenS1 = 0∗ΩC/X is a rankr vector bundle.C is a closed subcone
of A(C) = (S1)∨, hence by dimension reasonsC = A(C). ut

If E andF are abelian cones overX, then any morphism of conesφ : E → F
is a morphism ofX-group schemes. IfE and F are vector bundles, thenφ is a
morphism of vector bundles.

Example If X → Y is a closed immersion with ideal sheafI , then⊕
n≥0

I n/I n+1

is a sheaf ofOX -algebras and

CX/Y = Spec
⊕
n≥0

I n/I n+1

is a cone overX, called thenormal coneof X in Y . The associated abelian cone
NX/Y = Spec SymI /I 2 is also called thenormal sheafof X in Y .

More generally, any local immersion of Deligne-Mumford stacks has a nor-
mal cone whose abelian hull is its normal sheaf (see [15], Definition 1.20).

Exact sequences of cones

Definition 1.2 A sequence of cone morphisms

0−→ E
i−→ C −→ D −→ 0

is exact if E is a vector bundle and locally over X there is a morphism of cones
C → E splitting i and inducing an isomorphism C→ E × D.

Remark Given a short exact sequence

0−→ F ′ −→ F −→ E −→ 0

of coherent sheaves onX, with E locally free, then

0−→ C(E ) −→ C(F ′) −→ C(F ) −→ 0

is exact, and conversely (see [6], Example 4.1.7).
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Lemma 1.3 Let C → D be a smooth, surjective morphism of cones, and let
E = C ×D,0 X; then the sequence

0−→ E −→ C −→ D −→ 0

is exact.

Proof. Write C = Spec
⊕

Si , D = Spec
⊕

S′i . We start by proving that

0−→ E −→ A(C) −→ A(D) −→ 0

is exact.
By base change we may assumeS′i = 0 for i ≥ 2. The coneE =

Spec SymE is a vector bundle because it is smooth. On the other hand,
E = Spec

⊕
(Si /S′1Si−1). As C → D is smooth and surjective,S1 → S′1

is injective. So we get an exact sequence

0−→ S1 −→ S′1 −→ E −→ 0.

To complete the proof, remark thatC → A(C)×A(D) D is a closed immersion,
and both these schemes are smooth of the same relative dimension overD . ut

E-Cones

If E is a vector bundle andd : E → C a morphism of cones, we say thatC
is an E-cone, if C is invariant under the action ofE on A(C). We denote the
induced action ofE on C by

E × C −→ C

(ν, γ) 7−→ dν + γ .

A morphismφ from an E-cone C to an F -cone D (or a morphism of vector
bundle cones) is a commutative diagram of cones

E
d−→ C

φ ↓ ↓ φ

F
d−→ D .

If φ : (E, d,C) → (F , d,D) and /υ : (E, d,C) → (F , d,D) are morphisms, we
call themhomotopic, if there exists a morphism of conesk : C → F , such that

1. kd = /υ − φ,
2. dk = /υ − φ.

Here the second condition is to be interpreted as saying thatφ + dk = /υ. (More
precisely, we say thatk is a homotopyfrom φ to /υ.)
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Remark A sequence of cone morphisms withE a vector bundle

0−→ E
i−→ C −→ D −→ 0

is exact if and only ifC is anE-cone,C → D is surjective, and the diagram

E × C
σ−→ C

p ↓ ↓ φ

C
φ−→ D

is cartesian, wherep is the projection andσ the action.

Proposition 1.4 Let (C , 0, γ) and (D , 0, γ) be algebraicX-spaces with sections
andA1-actions and letφ : C → D be anA1-equivariantX-morphism, which is
smooth and surjective. LetE = C ×D,0 X. Assume thatE is a vector bundle.
ThenC is anE-cone overX if and only if D is a cone overX. Moreover,C is
abelian (a vector bundle) if and only ifD is.

Proof. Let us first assume thatC is an abelian cone,C = Spec SymF . The
morphism E → C gives rise toF → E ∨, where E is the coherentOX -
modules of sections ofE. Note thatF → E ∨ is an epimorphism, sinceE → C
is injective. LetG be the kernel, so that

0−→ G −→ F −→ E ∨ −→ 0

is a short exact sequence. Then

0−→ E −→ C −→ C(G ) −→ 0

is a short exact sequence of abelian cones overX, so D ∼= C(G ) and soD is
an abelian cone.

In general,C ⊂ A(C) is defined by a homogeneous sheaf of idealsI ⊂
SymS 1, where S =

⊕
S i and C = SpecS . Let F = S 1 and let G

as above be the kernel ofF → E ∨. Let J = I ∩ SymG , which is a
homogeneous sheaf of ideals in SymG , soC ′ = Spec SymG /J is a cone over
X. By construction,C ′ is the scheme theoretic image ofC in C(G ). HenceC ′

is the quotient ofC by E and soC ′ ∼= D andD is a cone.
Now for the converse. The claim is local inX. Note thatC → D is an

E-torsor overD . So sinceD is affine overX we may assume thatC = D × E
asX-schemes withA1-action. Then we are done. ut

Cone stacks

Let X be, as above, a Deligne-Mumford stack overk. We need to define the
2-category of algebraic stacks withA1-action overX.
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Definition 1.5 Let C be an algebraic stack over X , together with a section0 :
X → C. AnA1-actionon (C, 0) is given by a morphism of X -stacks

γ : A1 × C −→ C

and three 2-isomorphismsθ1, θ0 andθγ between the 1-morphisms in the following
diagrams.

1.

C
(1,id)−→ A1 × C

id ↘ ↓ γ

C

andθ1 : id → γ ◦ (1, id).
2.

C
(0,id)−→ A1 × C

0 ↘ ↓ γ

C

andθ0 : 0→ γ ◦ (0, id).
3.

A1 × A1 × C id×γ−→ A1 × C
m×id ↓ ↓ γ

A1 × C γ−→ C

andθγ : γ ◦ (m× id) → γ ◦ (id×γ).

The 2-isomorphismsθ1, θ0 and θγ are required to satisfy certain compatibilities
which we leave to the reader to make explicit (see also Sect. 1.4 in Exposé XVIII
of [2], where a similar problem, the definition of Picard stacks, is dealt with).

Let (C, 0, γ) and (D, 0, γ) be X -stacks with sections andA1-actions. Then an
A1-equivariant morphismφ : C → D is a triple (φ, η0, ηγ), whereφ : C → D

is a morphism of algebraic X -stacks andη0 andηγ are 2-isomorphisms between
the morphisms in the following diagrams.

1.
X

0−→ C

0 ↘ ↓ φ

D

(1)

andη0 : 0→ φ ◦ 0.
2.

A1 × C id×φ−→ A1 ×D
γ ↓ ↓ γ

C
φ−→ D

(2)

andηγ : φ ◦ γ → γ ◦ (id×φ).
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Again, the 2-isomorphisms have to satisfy certain compatibilities we leave to the
reader to spell out.

Finally, let (φ, η0, ηγ) : C→ D and(/υ, η′0, η
′
γ) : C→ D be twoA1-equivariant

morphisms. AnA1-equivariant isomorphismζ : φ → /υ is a 2-isomorphismζ :
φ→ /υ such that the diagrams (notation compatible with (1) and (2))

1.

0
η0−→ φ ◦ 0

η′0 ↘ ↓ ζ◦0

/υ ◦ 0

2.

φ ◦ γ −→ γ ◦ (id×φ)
ζ◦γ ↓ ↓ γ◦(id×ζ)

/υ ◦ γ −→ γ ◦ (id×/υ)

commute.

If C is anE-cone, then sinceE acts onC , we may form the stack quotient of
C by E overX, denoted [C/E]. For anX-schemeT, the groupoid of sections of
[C/E] over T is the category of pairs (P, f ), whereP is anE-torsor (a principal
homogeneousE-bundle) overT and f : P → C is anE-equivariant morphism.

The X-stack [C/E] comes with a section 0 :X → [C ,E] and anA1-action
γ : A1× [C/E] → [C/E]. The section 0 is given by the pair (ET , 0) over every
X-schemeT; hereET is the trivial E-bundle onT and 0 :ET → C is the vertex
morphism. TheA1-action ofα ∈ A1(T) = OT (T) on the category [C/E](T) is
given byα · (P, f ) = (αP, αf ), whereαP = P ×E,α E andαf : P ×E,α E → C
is given by [p, ν] 7→ αf (p) + d(ν).

If φ : (E,C) → (F ,D) is a morphism of vector bundle cones we get an
inducedA1-equivariant morphism̃φ : [C/E] → [D/F ]. A homotopyk : φ→ /υ

gives rise to anA1-equivariant 2-isomorphism̃k : φ̃ → /̃υ of A1-equivariant
morphisms of stacks withA1-action. (See Sect. 2 where these constructions are
made explicit in a similar case.)

Lemma 1.6 Let φ, /υ : (E,C) → (F ,D) be morphisms andζ : φ̃ → /̃υ an
A1-equivariant 2-isomorphism between the associatedA1-equivariant morphisms
[C/E] → [D/F ]. Then ζ = k̃, for a unique homotopyk : φ→ /υ.

Proof. We indicate how to constructk : C → F . Given a sectionc ∈ C(T) of
C over theX-schemeT, we consider the induced object (ET , c) of [C/E](T).
The associatedFT -torsorsET ×ET ,φ0 FT and ET ×ET ,/υ0 FT are trivial, so that
φ(T)(ET , c) is a section ofF over T. This section we define to bek(c). ut

Proposition 1.7 Let C be anE-cone andD anF -cone. Letφ : (E,C) → (F ,D)
be a morphism. If the diagram
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E −→ C
↓ ↓
F −→ D

is cartesian andF × C → D ; (µ, γ) 7→ dµ + φ(γ) is surjective, then [C/E] →
[D/F ] is an isomorphism of algebraicX-stacks withA1-action.

Proof. Similar to the proof of Proposition 2.1 below.ut
Definition 1.8 We call an algebraic stack(C, 0, γ) over X with section andA1-
action acone stack, if, locally with respect to théetale topology on X , there exists
a cone C over X and anA1-equivariant morphism C→ C that is smooth and
surjective and such that E= C ×C,0 X is a vector bundle over X .

The morphism C→ C, or by abuse of language C , is called alocal presen-
tation of C. The section0 : X → C is called thevertex of C.

LetC andD be cone stacks over X . Amorphism of cone stacksφ : C→ D

is anA1-equivariant morphism of algebraic X -stacks.
A 2-isomorphism of cone stacksis just anA1-equivariant 2-isomorphism.

If C → C is a presentation ofC, and E = C ×C,0 X, then C is an E-cone
andC ∼= [C/E] as stacks withA1-action (use Lemma 1.3 and Proposition 1.4).

If φ : C → D is a morphism of cone stacks, then, locally with respect to
the étale topology onX, φ is A1-equivariantly isomorphic to [C/E] → [D/F ],
whereE → F is a morphism of vector bundles overX andC → D is a morphism
from theE-coneC to theF -coneD .

A 2-isomorphism of cone stacksζ : φ → /υ, whereφ, /υ : C → D, is locally
over X given by a homotopy of morphisms of vector bundle cones. More pre-
cisely, one can find local presentationsC ∼= [C/E] andD ∼= [D/F ] such that both
φ and/υ are induced by morphisms of vector bundle conesφ, /υ : (E,C) → (F ,D)
and under these identificationsζ comes from a homotopy fromφ to /υ. This fol-
lows from Lemma 1.6.

Remark Let C be a cone stack overX. By Proposition 1.4 the fibered product
overC of any two local presentations is again a local presentation. Moreover, if
C is a representable cone stack overX, thenC is a cone. Every fibered product
of cone stacks is a cone stack.

Examples All cones are cone stacks and all morphisms of cones are morphisms
of cone stacks. For a vector bundleE on X, the classifying stackBE is a cone
stack. Every homomorphism of vector bundlesφ : E → F gives rise to a
morphism of cone stacks.

Definition 1.9 A cone stackC over X is calledabelian, if, locally in X , one can
find presentations C→ C, where C is an abelian cone. A cone stack is avector
bundle stack, if one can find such local presentations such that C is a vector
bundle. IfC is abelian (a vector bundle stack), then for every local presentation
C → C the cone C will be abelian (a vector bundle).
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Proposition 1.10 Every cone stack is a closed subcone stack of an abelian cone
stack. There exists a universal such abelian cone stack. It is called theassociated
abelian cone stackor theabelian hull.

Proof. Just glue the stacks obtained from the abelian hulls of local presentations.
ut
Definition 1.11 LetE be a vector bundle stack andE → C a morphism of cone
stacks. We say thatC is an E-cone stack, if E → C is locally isomorphic (as
a morphism of cone stacks, i.e.A1-equivariantly) to the morphism[E1/E0] →
[C/F ] coming from a commutative diagram

E0 −→ F
↓ ↓

E1 −→ C ,

where C is both an E1- and an F-cone.

If C is anE-cone stack, then there exists a natural morphismE × C → C

coming from the actionE1×C → C in a local presentation ofE→ C as above.
We callE× C→ C the action of E on C.

Definition 1.12 Let E → C → D be a sequence of morphisms of cone stacks,
whereC is anE-cone stack. If

1. C→ D is a smooth epimorphism,
2. the diagram

E× C σ−→ C

p ↓ ↓
C −→ D

(where p is the projection andσ the action) is cartesian,

we call0→ E→ C→ D→ 0 a short exact sequenceof cone stacks. Note that
this is equivalent toC being locally isomorphic toE×D.

Proposition 1.13 The sequenceE → C → D of morphisms of cone stacks is
exact if and only if locally inX there exist commutative diagrams

0 −→ E0 −→ F −→ G −→ 0
↓ ↓ ↓

0 −→ E1 −→ C −→ D −→ 0,

where the top row is a short exact sequence of vector bundles and the bottom
row is a short exact sequence of cones, such thatE→ C→ D is isomorphic to
[E1/E0] → [C/F ] → [D/G].

Proof. The statement is local onX. To prove the only if part we can assume
C = E×D, and then it is trivial. To prove the if part, note that both short exact
sequences are locally split.ut
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2 Stacks of the formh1/h0

The general theory

We shall review here some aspects of the theory of Picard stacks developed by
Deligne in Sect. 1.4 of Exposé XVIII in [2]. For the precise definition of Picard
stack see [ibid.]. Roughly speaking, a Picard stack is a stack together with an
‘addition’ operation, that is both associative and commutative. An example would
be the stack of torsors under a commutative group sheaf.

Let X be a topos andd : E0 → E1 a homomorphism of abelian sheaves on
X, which we shall consider as a complex of abelian sheaves onX. Via d, the
abelian sheafE0 acts onE1 and we may consider the stack-theoretic quotient of
this action, denoted

h1/h0(E•) = [E1/E0],

which is a Picard stack onX. (See also [ibid.] 1.4.11, whereh1/h0(E•) is de-
noted ch(E•).) For an objectU ∈ obX the groupoidh1/h0(E•)(U ) of sections of
h1/h0(E•) over U is the category of pairs (P, f ), whereP is anE0-torsor (prin-
cipal homogeneousE0-bundle) overU and f : P → E1|U is anE0-equivariant
morphism of sheaves onU .

Now if d : F 0 → F 1 is another homomorphism of abelian sheaves onX
and φ : E• → F • is a homomorphism of homomorphisms (or in other words
a homomorphism of complexes), then we get an induced morphism of Picard
stacks (an additive morphism in the terminology of [ibid.])

h1/h0(φ) : h1/h0(E•) −→ h1/h0(F •).

For an objectU ∈ obX the functorh1/h0(φ)(U ) maps the pair (P, f ) to the pair
(P ×E0,φ0 F 0, φ1(f )), whereφ1(f ) denotes the map

φ1(f ) : P ×E0 F 0 −→ F 1

[p, ν] 7−→ φ1(f (p)) + d(ν).

Now, if /υ : E• → F • is another homomorphism of complexes andk : φ→ /υ
is a homotopy, i.e. a homomorphism of abelian sheavesk : E1 → F 0, such that

1. kd = /υ0 − φ0,
2. dk = /υ1 − φ1,

then we get an induced isomorphismθ : h1/h0(φ) → h1/h0(/υ) of morphisms of
Picard stacks fromh1/h0(E•) to h1/h0(F •). If U ∈ obX is an object, thenθ(U )
is a natural transformation of functors fromh1/h0(φ)(U ) to h1/h0(/υ)(U ). For
an object (P, f ) of h1/h0(E•)(U ) the morphismθ(U )(P, f ) is a morphism from
h1/h0(φ)(U )(P, f ) to h1/h0(/υ)(U )(P, f ) in the categoryh1/h0(F •)(U ). In fact,
θ(U )(P, f ) is the isomorphism ofF 0|U -torsors

θ(U )(P, f ) : P ×E0,φ0 F 0 −→ P ×E0,/υ0 F 0 (3)

[p, ν] 7−→ [p, kf (p) + ν],
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such that the diagram ofF 0|U -sheaves

P ×E0,φ0 F 0

θ(U )(P,f ) ↓ ↘ φ1(f )

P ×E0,/υ0 F 0 /υ1(f )−→ F 1

commutes.

Proposition 2.1 Let φ : E• → F • be a homomorphism of homomorphisms of
abelian sheaves onX, as above. Ifφ induces isomorphisms on kernels and coker-
nels (i.e. ifφ is a quasi-isomorphism), thenh1/h0(φ) : h1/h0(E•) → h1/h0(F •)
is an isomorphism of Picard stacks overX.

Proof. First let us treat the case thatφ is a homotopy equivalence. Then, in fact,
any homotopy inverse ofφ will provide an inverse toh1/h0(φ), by the above
remarks.

As a second case, let us assume thatφ• : E• → F • is an epimorphism (i.e.
φ0 andφ1 are epimorphisms). In this caseE1 → [F 1/F 0] is an epimorphism, so
for [E1/E0] to be isomorphic to [F 1/F 0], it is necessary and sufficient that

E0 × E1 d+id−→ E1

pr ↓ ↓
E1 −→ [F 1/F 0]

be cartesian. This quickly reduces to proving that

E1 × E0 −→ E1

↓ ↓
E1 × F 0 −→ F 1

is cartesian, which, in turn, is equivalent to

E0 −→ E1

↓ ↓
F 0 −→ F 1

being cartesian, which is a consequence of the assumptions.
Finally, let us note that a generalφ factors as a homotopy equivalence

followed by an epimorphism. To see this considerE• ⊕ F 0, which is ho-
motopy equivalent toE•. Define a homomorphism/υ : E• ⊕ F 0 → F • by
/υ0(ν, µ) = φ0(ν) + µ and /υ1(χ, µ) = φ1(χ) + d(µ). Then /υ is surjective and
φ = /υ ◦ i , wherei : E• → E• ⊕ F 0 is given byi = id⊕0. ut

If E• is a complex of arbitrary length of abelian sheaves onX, let

Zi (E•) = ker(Ei → Ei +1)

Ci (E•) = cok(Ei−1 → Ei ).
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The complexE• induces a homomorphism

τ[0,1]E
• = [C0(E•) → Z1(E•)]

and we leth1/h0(E•) = h1/h0(τ[0,1]E•).
Now let OX be a sheaf of rings onX andC(OX ), K (OX ) andD(OX ) the cate-

gory of complexes ofOX -modules, the category of complexes ofOX -modules up
to homotopy and the derived category of the category Mod(OX ) of OX -modules,
respectively. Letφ : E• → F • be a morphism inD(OX ). Let

H • /υ−→ F •

α ↓
E•

be a diagram inC(OX ) giving rise toφ, whereα is a quasi-isomorphism. We
get an induced diagram of Picard stacks

h1/h0(H •)
h1/h0(/υ)−→ h1/h0(F •)

h1/h0(α) ↓
h1/h0(E•),

whereh1/h0(α) is an isomorphism by Proposition 2.1. Choosing an inverse of
h1/h0(α) induces a morphism

h1/h0(E•) −→ h1/h0(F •).

One checks that different choices of (α,H •, /υ) and h1/h0(α)−1 give rise to
isomorphic morphismsh1/h0(E•) → h1/h0(F •). This proves in particular that
if E• andF • are isomorphic inD(OX ), then the PicardX-stacksh1/h0(E•) and
h1/h0(F •) are isomorphic.

Example If d : E0 → E1 is a monomorphism thenh1/h0(E•) = cok(d) is a
sheaf overX.

If d : E0 → E1 is an epimorphism thenh1/h0(E•) = B ker(d) is a gerbe over
X.

Lemma 2.2 1. Let φ, /υ : E• → F • be two morphisms inD(OX ). Then, if
for some choice ofh1/h0(φ) and h1/h0(/υ) we haveh1/h0(φ) ∼= h1/h0(/υ) as
morphisms of Picard stacks, thenφ = /υ.

2. Let 0(E,F ) be the zero morphism 0(E,F ) : h1/h0(E•) → h1/h0(F •).
Then Aut(0(E,F )) = Hom−1

D(OX )(E
•,F •).

Proof. These are similar to Lemma 1.6. See also [ibid.].ut
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Application to schemes

Let X be a Deligne-Mumford stack. Consider the morphism of topoi

v : Xfl −→ Xét.

The functorv∗ restricts a sheaf on the big fppf-site to the smallétale site and its
left adjoint v−1 extends the embedding of theétale site into the flat site.

Let OXfl and OXét denote the sheaves of rings induced byOX on Xfl and Xét,
respectively. There is a canonical morphism of sheaves of ringsv−1OXét → OXfl ,
so that we have a morphism of ringed topoi

v : (Xfl,OXfl ) → (Xét,OXét).

The induced functor from Mod(OXét) to Mod(OXfl ) will be denoted byv∗:

v∗(M ) = v−1M ⊗v−1OXét
OXfl .

Since Mod(OXét) has enough flat modules we may derive the right exact functor
v∗ to get the functorLv∗ : D−(OXét) → D−(OXfl ). To abbreviate notation, we
write M •

fl = Lv∗M • for M • ∈ obD−(OXét).
We shall also need to consider the functor

RHom( · ,OXfl ) : D−(OXfl ) −→ D+(OXfl ).

It is defined using an injective resolutionOXfl

∼→ I • of OXfl , i.e.

RHom(M •,OXfl ) = totHom(M •,I •),

but if M • happens to have a projective resolutionP • ∼→ M •, then we have

RHom(M •,OXfl ) ∼= Hom(P •,OXfl).

We shall abbreviate notation by writing

M •∨ = RHom(M •,OXfl ).

We will be interested in the stackh1/h0((M •
fl )∨) associated to an object

M • ∈ obD−(OXét). Note that for suchM • ∈ obD−(OXét) we have

h1/h0((M •
fl )∨) ∼= h1/h0((τ≥−1M •

fl )∨).

Definition 2.3 We say that an object L• of D(OXét) satisfies Condition(?) if

1. hi (L•) = 0 for all i > 0,
2. hi (L•) is coherent, for i= 0,−1.

Proposition 2.4 Let L• ∈ obD(OXét) satisfy Condition (?). Then theX-stack
h1/h0((L•fl )∨) is an algebraicX-stack, in fact an abelian cone stack overX.
Moreover, if L• is of perfect amplitude contained in [−1, 0], thenh1/h0((L•fl )∨)
is a vector bundle stack.
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Proof. The claim is local inX (with respect to théetale topology), so we may
assume thatL• has a free resolution, or thatL• itself consists of freeOX -modules.
We may also assume thatLi = 0, for all i > 0 and thatL0 and L−1 have finite
rank. ThenL•fl is given byL• itself, since a free sheaf is flat, and (L•fl )∨ is given
by L∨•, taking duals component-wise, since a free module is projective. Thus

h1/h0((L•fl )∨) = [Z1(L∨•)/L∨0],

which is the cone stack given by the homomorphism of abelian conesL∨0 →
Z1(L∨•) = C(C−1(L•)).

If L• is of perfect amplitude contained in [−1, 0], then we may assume that
in addition to the above assumptionsLi = 0, for all i ≤ −2. ThenZ1(L∨•) = L∨1

is a vector bundle. ut
So if φ : E• → L• is a homomorphism inD(OXét), whereE• andL• satisfy

(?), then we get an induced morphism of algebraic stacks

φ∨ : h1/h0((L•fl )∨) −→ h1/h0((E•
fl )∨).

Proposition 2.5 The morphismφ∨ is a morphism of abelian cone stacks. More-
over, h0(φ) is surjective, if and only ifφ∨ is representable.

Proof. The fact thatφ∨ is a morphism of abelian cone stacks is immediate from
the definition. The second question is local inX, so we may assume thatE• and
L• are complexes of freeOX -modules and thatEi = Li = 0, for i > 0, and that
L0, L−1, E0 andE−1 are of finite rank. Consider the commutative diagram

C−1(E•) −→ E0

↓ ↓
C−1(L•) −→ L0

of coherent sheaves onX. Let F be the fibered product

F −→ E0

↓ ↓
C−1(L•) −→ L0.

The fact thath0(φ) is surjective, is equivalent to saying that the sequence

0−→ F −→ E0 ⊕ C−1(L•) −→ L0 −→ 0

is exact. SinceL0 is free, we get an induced exact sequence of cones

0−→ L∨0 −→ E∨0 ⊕ Z1(L∨•) −→ C(F ) −→ 0.

Hence by Proposition 1.7 we have

[Z1(L∨•)/L∨0] ∼= [C(F )/E∨0].

In particular the diagram
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C(F ) −→ Z1(E∨•)
↓ ↓

h1/h0((L•fl )∨) −→ h1/h0((E•
fl )∨)

is cartesian, henceφ∨ is representable.
For the converse, note thatφ∨ representable implies thatL∨0 → E∨0 ×

Z1(L∨•) is a closed immersion, which implies thatE0 ⊕ C−1(L•) → L0 is an
epimorphism. ut
Proposition 2.6 The morphismφ∨ is a closed immersion if and only ifh0(φ)
is an isomorphism andh−1(φ) is surjective. Moreover,φ∨ is an isomorphism if
and only if h0(φ) andh−1(φ) are.

Proof. Following the previous argument,φ∨ is a closed immersion if and only
if C(F ) → Z1(E∨•) is. This is equivalent toC−1(E•) → F being surjective. A
simple diagram chase shows that this is equivalent toh0(φ) being an isomorphism
andh−1(φ) being surjective. The ‘moreover’ follows similarly. ut
Proposition 2.7 Let

E• −→ F • −→ G• −→ E•[1]

be a distinguished triangle inD(OXét), whereE• andF • satisfy (?) andG• is of
perfect amplitude contained in [−1, 0]. Then the induced sequence

h1/h0(G∨) −→ h1/h0(F∨) −→ h1/h0(E∨)

is a short exact sequence of abelian cone stacks overX.

Proof. The question is local, so assume thatEi andF i are 0 fori > 0 and vector
bundles fori = 0,−1, and thatGi = F i ⊕ Ei +1. We have to prove that

0−→ [Z1(G∨)/G∨0] −→ [Z1(F∨)/F∨0] −→ [Z1(E∨)/E∨0] −→ 0

is a short exact sequence of cone stacks. By Proposition 1.13, it is enough to
prove that the exact sequence of sheaves

0−→ C−1(E•) −→ C−1(F •)⊕ E0 −→ C−1(G•) −→ 0

is exact. This is then a straightforward verification.ut

3 The intrinsic normal cone

Normal cones

Normal cones have the following functorial property. Consider a commutative
diagram of (arbitrary) algebraick-stacks
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X ′ j−→ Y ′

u ↓ ↓ v

X
i−→ Y ,

(4)

where i and j are local immersions. Then there is a natural morphism of cones
over X ′

α : CX′/Y′ −→ u∗CX/Y .

If (4) is cartesian, thenα is a closed immersion. If, moreover,v is flat, thenα
is an isomorphism.

Proposition 3.1 Consider a commutative diagram of Deligne-Mumford stacks

X
i ′−→ Y ′

i ↘ ↓ f

Y ,

where i and i ′ are local immersions andf is smooth. Then the sequence of
morphisms of cones overX

i ′∗TY′/Y
β−→ CX/Y ′

α−→ CX/Y , (5)

where the mapsα andβ are the natural ones, is exact.

Proof. The question is local, so we can assume thatX, Y and Y ′ are schemes
and thati ′ and i are immersions. This is then Example 4.2.6 in [6].ut
Lemma 3.2 Let

U
f−→ M

be a local immersion of affinek-schemes of finite type, whereM is smooth over
k. Then the normal coneCU/M ↪→ NU/M is invariant under the action off ∗TM

on NU/M . In other words,CU/M is an f ∗TM -cone.

Proof. Let pi : M × M → M , i = 1, 2, be the two projections. Each one gives
rise to a commutative diagram

U
∆f−→ M ×M

f ↘ ↓ pi

M ,

and hence to an exact sequence

0−→ f ∗TM
ji−→ NU/M×M

pi ∗−→ NU/M −→ 0

of abelian cones onU .
The diagonal gives rise to the commutative diagram
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U
f−→ M

∆f ↘ ↓ ∆

M ×M

and hence to a homomorphism

NU/M
s−→ NU/M×M

of abelian cones onU .
Now s is a section of bothp1∗ andp2∗. Using (j1, p1∗) we make the identi-

fication
NU/M×M = f ∗TM × NU/M . (6)

Then p2∗ is identified with the action off ∗TM on NU/M . Since the same func-
torialities of normal sheaves used so far are enjoyed by normal cones, we get
that under the identification (6) the subconeCU/M×M ⊂ NU/M×M corresponds
to f ∗TM × CU/M and the actionp2∗ : f ∗TM × NU/M → NU/M restricts to
p2∗ : f ∗TM × CU/M → CU/M . ut

The following is not used until Sect. 5.
Consider the diagram (4), assume it is cartesian and assume thatv is a

regular local immersion. Assume also thatY is smooth of constant dimension.
Let C = CX/Y andN = NY′/Y . Then we get an induced cartesian diagram

N ×Y C −→ u∗C −→ C
↓ ↓ ↓

j ∗N −→ X ′ u−→ X
↓ j ↓ ↓ i

N
ρ−→ Y ′ v−→ Y .

(7)

If Y is a scheme, Vistoli constructed in [15] a canonical rational equivalence
β(Y ′,X) ∈ W∗(N ×Y C) such that

∂β(Y ′,X) = [Cu∗C/C ] − [ρ∗CX′/Y′ ].

Note Let 0 : u∗C → N ×Y C be the zero section. Then

0![Cu∗C/C ] = v! [C ] ∈ A∗(u∗C),

by the definition ofv! . On the other hand,

0![ρ∗CX′/Y′ ] = 0!ρ! [CX′/Y′ ] = [CX′/Y′ ] ∈ A∗(u∗C).

So the existence of Vistoli’s rational equivalence implies that

v! [C ] = [CX′/Y′ ].

Proposition 3.3 Vistoli’s rational equivalence commutes with any smooth base
changeφ : Y1 → Y . More precisely, if we denote by a subscript (· )1 the base
change viaφ of any object in (7), then

φ∗β(Y ′,X) = β(Y ′
1 ,X1) ∈ W∗(N1 ×Y1 C1).
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Proof. If φ is étale, this is Lemma 4.6(ii) in [15]. Vistoli’s proof is based on the
fact that the following commute with́etale base change: blowing up a scheme
along a closed subscheme; normalization; order of a Cartier divisor along an
irreducible Weil divisor on a reduced, equidimensional scheme. But all these
operations do in fact commute with smooth base change.ut

A first consequence of this proposition is that we may drop the assumption
that Y be a scheme. We getβ(Y ′,X) ∈ W∗(N ×Y C) for any situation (7). The
consequencev! [C ] = [CX′/Y′ ] holds if Y (and hence all other stacks in (7)) is of
Deligne-Mumford type.

Now let us assume thati : X → Y factors as

X
ı̃−→ Ỹ

i ↘ ↓ π

Y ,

where ı̃ is another local immersion andπ is of relative Deligne-Mumford type
(i.e. has unramified diagonal) and is smooth of constant fiber dimension. Then
we construct the cartesian diagram

Ỹ ′ ṽ−→ Ỹ
↓ ↓ π

Y ′ v−→ Y

and over
X ′ u−→ X
̃ ↓ ↓ ı̃

Ỹ ′ ũ−→ Ỹ

we construct the analogue of (7):

N ×Y C̃ −→ u∗C̃ −→ C̃
↓ ↓ ↓

j ∗N −→ X ′ u−→ X
↓ ̃ ↓ ↓ ı̃

π∗N
ρ̃−→ Ỹ ′ ṽ−→ Ỹ ,

(8)

i.e. C̃ = C
X/Ỹ

. Diagrams (7) and (8) may be fused into one large diagram

N ×Y C̃ −→ u∗C̃ −→ C̃
↓ ↓ ↓ α

N ×Y C −→ u∗C −→ C
↓ ↓ ↓

j ∗N −→ X ′ u−→ X
↓ ̃ ↓ ↓ ı̃

π∗N
ρ̃−→ Ỹ ′ ṽ−→ Ỹ

↓ ↓ ↓ π

N
ρ−→ Y ′ v−→ Y .

(9)
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By Proposition 3.1 the morphism̃C → C is a T
Ỹ/Y

×
Ỹ

C-bundle.

Proposition 3.4 We haveα∗(β(Y ′,X)) = β(Ỹ ′,X) in W∗(N ×Y C̃).

Proof. By the compatibilities ofβ proved in [15] we reduce to the case that
Ỹ = An

Y , π : An
Y → Y is a relative affinen-space and̃ı : Y → An

Y is the zero
section. Then one checks that Vistoli’s construction commutes withπ. ut

Proposition 3.5 In the situation of Diagram (7) assume thatY is of Deligne-
Mumford type. Vistoli’s rational equivalenceβ(Y ′,X) ∈ W∗(N×Y C) is invariant
under the natural action ofj ∗N ×Y TY on N ×Y C .

Proof. The vector bundlei ∗TY acts on theX-cone C by Lemma 3.2. Pulling
back fromX to j ∗N gives the natural action ofj ∗N×Y TY on N×Y C . Using the
construction of the proof of Lemma 3.2 the claim follows from Proposition 3.4
applied toỸ = Y × Y and ı̃ = ∆ ◦ i : X → Y × Y . ut

The intrinsic normal cone

Let X be a Deligne-Mumford stack, locally of finite type overk. Let L•X be the
cotangent complex ofX relative tok. ThenL•X ∈ obD(OX ét) andL•X satisfies (?).

Definition 3.6 We denote the algebraic stack h1/h0(((L•X )fl)
∨) byNX and call it

the intrinsic normal sheaf of X .

We shall now construct the intrinsic normal cone as a closed subcone stack
of NX .

Definition 3.7 A local embeddingof X is a diagram

U
f−→ M

i ↓
X ,

where

1. U is an affine k-scheme of finite type,
2. i : U → X is anétale morphism,
3. M is a smooth affine k-scheme of finite type,
4. f : U → M is a local immersion.

By abuse of language we call the pair(U ,M ) a local embedding of X .
A morphism of local embeddingsφ : (U ′,M ′) → (U ,M ) is a pair of mor-

phismsφU : U ′ → U andφM : M ′ → M such that

1. φU is an étale X -morphism,
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2. φM is a smooth morphism such that

U ′ f ′−→ M ′

φU ↓ ↓ φM

U
f−→ M

commutes.

If (U ′,M ′) and (U ,M ) are local embeddings ofX, then (U ′×X U ,M ′×M )
is naturally a local embedding ofX which we call theproductof (U ′,M ′) and
(U ,M ), even though it may not be the direct product of (U ′,M ′) and (U ,M )
in the category of local embeddings ofX.

Let

U
f−→ M

i ↓
X

be a local embedding ofX. Let I /I 2 be the conormal sheaf ofU in M . There
is a natural homomorphism of coherentOU -modulesI /I 2 → f ∗ΩM . Moreover,
there exists a natural homomorphism

φ : L•X |U −→ [I /I 2 → f ∗ΩM ]

in D(OUét), where we think of [I /I 2 → f ∗ΩM ] as a complex concentrated in
degrees−1 and 0. Moreover,φ induces an isomorphism onh−1 and h0 (see
[10], Chapitre III, Corollaire 3.1.3). Hence by Proposition 2.6 we get an induced
isomorphism of cone stacks

φ∨ : [NU/M /f ∗TM ] −→ i ∗NX ,

whereTM is the tangent bundle ofM andNU/M is the normal sheaf of the local
embeddingf . In other words,NU/M is a local presentation of the abelian cone
stackNX .

If χ : (U ′,M ′) → (U ,M ) is a morphism of local embeddings we get an
induced commutative diagram

I /I 2|U ′ −→ f ∗ΩM |U ′

↓ ↓
I ′/I ′2 −→ f ′∗ΩM ′ ,

in other words a homomorphism

χ̃ : [I /I 2 → f ∗ΩM ]|U ′ −→ [I ′/I ′2 → f ′∗ΩM ′ ] .

We haveχ̃ ◦ φ|U ′ = φ′ in D(OU ′
ét
), because of the naturality ofφ. Thus the

induced morphism

χ̃∨ : [NU ′/M ′/f ′∗TM ′ ] −→ [NU/M /f ∗TM ]|U ′
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is compatible with the isomorphisms toNX . Note that, in particular,̃χ∨ is an
isomorphism of cone stacks overU ′.

Recall Lemma 3.2. Letχ : (U ′,M ′) → (U ,M ) be a morphism of local
embeddings. Then we get an induced morphism from thef ′∗TM ′ -coneCU ′/M ′

to the f ∗TM |U ′-coneCU/M |U ′. Note that the kernel off ′∗TM ′ → f ∗TM |U ′ is
f ′∗TM ′/M .

Lemma 3.8 The pair (CU/M ↪→ NU/M )|U ′ is the quotient of (CU ′/M ′ ↪→
NU ′/M ′ ) by the action off ′∗TM ′/M .

Proof. This follows immediately from Proposition 3.1. ut

Corollary 3.9 The isomorphism

χ̃∨ : [NU ′/M ′/f ′∗TM ′ ] −→ [NU/M /f ∗TM ]|U ′

identifies the closed subcone stack[CU ′/M ′/f ′∗TM ′ ] with the closed subcone stack
[CU/M /f ∗TM ]|U ′.

By this corollary, there exists a unique closed subcone stackCX ↪→ NX , such
that for every local embedding (U ,M ) of X we haveCX |U = [CU/M /f ∗TM ], or
in other words that

CU/M −→ NU/M

↓ ↓
CX −→ NX

is cartesian.

Definition 3.10 The cone stackCX is called theintrinsic normal cone of X .

Theorem 3.11 The intrinsic normal coneCX is of pure dimension zero. Its abelian
hull isNX.

Proof. The second claim follows because the normal sheaf is the abelian hull
of the normal cone, for any local embedding. To prove the claim about the
dimension ofCX , consider a local embedding (U ,M ) of X, giving rise to the
local presentationCU/M of CX . Assume thatM is of pure dimension. We then
have a cartesian and cocartesian diagram ofU -stacks

f ∗TM × CU/M −→ CU/M

↓ ↓
CU/M −→ [CU/M /f ∗TM ].

Thus CU/M→[CU/M /f ∗TM ] is a smooth epimorphism of relative dimension
dimM . So sinceCU/M is of pure dimension dimM (see [6], B.6.6) the stack
[CU/M /f ∗TM ] has pure dimension dimM − dimM = 0. ut
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Remark One may constructNX by simply gluing the various stacks
[NU/M /f ∗TM ], coming from the local embeddings ofX. So one doesn’t need the
construction preceding Proposition 2.4 to define the intrinsic normal sheaf and
the intrinsic normal cone. But for objectsE• of D−(OXét) satisfying (?) other
thanL•X , we could not prove that such gluing works a priori. The problem is, that
in general one does not have such a nice distinguished class of local resolutions
of E• (like the one coming from local embeddings forL•X ). In general, local
(free) resolutions ofE• are only compatible up to homotopy.

Basic properties

Proposition 3.12 (Local complete intersections)The following are equivalent.

1. X is a local complete intersection,
2. CX is a vector bundle stack,
3. CX = NX .

If, for example,X is smooth, we haveCX = NX = BTX .

Proof. (1)=⇒(3). If X is a local complete intersection, then local embeddings of
X are regular immersions, but for regular immersions normal cone and normal
sheaf coincide.
(3)=⇒(2). If for a local embedding normal cone and normal sheaf coincide, then
it is a regular immersion. ThusX is a local complete intersection so thatNX is
a vector bundle stack.
(2)=⇒(1). If CX is a vector bundle stack it is equal to its abelian hull. Hence
CX = NX andX is a local complete intersection.ut
Proposition 3.13 (Products) Let X andY be Deligne-Mumford stacks of finite
type overk. Then

NX×Y = NX ×NY

and
CX×Y = CX × CY .

Proof. If X ⊂ V andY ⊂ W are affine schemes, it is easy to check that there is
a natural isomorphismCX/V ×CY/W → CX×Y/V×W , compatible withétale base
change; the same is true if we replace the normal cone by the normal sheaf.

If C is anE-cone andD is anF -cone, thenC×D is anE×F -cone and there
is a canonical isomorphism of cone stacks [C/E] × [D/F ] → [C ×D/E × F ].

Putting together this remarks and verifying that the canonical isomorphisms
glue completes the proof. ut
Proposition 3.14 (Pullback) Let f : X → Y be a local complete intersection
morphism. Then we have a natural short exact sequence of cone stacks

NX/Y −→ CX −→ f ∗CY

over X, whereNX/Y = h1/h0(T•
X/Y ).
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Proof. We have a distinguished triangle inD(OXét)

f ∗LY −→ LX −→ LX/Y −→ f ∗LY [1],

andLX/Y is of perfect amplitude contained in [−1, 0]. So by Proposition 2.7 we
have a short exact sequence of abelian cone stacks

NX/Y −→ NX −→ f ∗NY

on X. So the claim is local inX and we may assume that we have a diagram

X
i−→ M ′′ −→ M ′

↘ ↓ ↓
Y −→ M ,

where the square is cartesian, the vertical maps are smooth, the horizontal maps
are local immersions,i is regular andM is smooth. Then we have a morphism
of short exact sequences of cones onX:

i ∗TM ′′/Y −→ TM ′ |X −→ TM |X
↓ ↓ ↓

NX/M ′′ −→ CX/M ′ −→ CY/M |X.

This is a local presentation for the short exact sequence

NX/Y −→ CX −→ f ∗CY

of cone stacks. ut

4 Obstruction theory

The intrinsic normal sheaf as obstruction

A closed immersionT → T of schemes is called asquare-zero extensionwith
ideal sheafJ if J is the ideal sheaf ofT in T andJ 2 = 0.

Let X be a Deligne-Mumford stack,NX its intrinsic normal sheaf. LetT → T
be a square zero extension with ideal sheafJ and g : T → X a morphism. By
the functorialities of the cotangent complex we have a canonical homomorphism

g∗L•X −→ L•T −→ L•
T/T

(10)

in D(OTét). Sinceτ≥−1L•
T/T

= J [1], this homomorphism may be considered as an

elementω(g) of Ext1(g∗L•X , J ). Recall the following basic facts of deformation
theory. An extensiong : T → X of g exists if and only ifω(g) = 0 and if
ω(g) = 0 the extensions form a torsor under Ext0(g∗L•X , J ) = Hom(g∗ΩX , J ).

These facts can be interpreted in terms of the intrinsic normal sheafNX of
X. To do this, note that (10) gives rise to a morphism
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h1/h0(L•
T/T

) −→ h1/h0(g∗L•X )

of cone stacks overT. Since h1/h0(L•
T/T

) = C(J ) and h1/h0(g∗L•X ) = g∗NX

we have constructed a morphismob(g) : C(J ) → g∗NX . We also consider
the morphism 0(g) : C(J ) → g∗NX given as the composition ofC(J ) → X
with the vertex ofg∗NX . By Hom(ob(g), 0(g)) we shall denote the sheaf of
2-isomorphisms of cone stacks fromob(g) to 0(g), restricted toTét.

Given a square zero extensionT → T and a morphismg : T → X, we denote
the set of extensionsg : T → X of g by Ext(g,T). These extensions in fact form
a sheaf onTét which we shall denote Ext(g,T).

Proposition 4.1 There is a canonical isomorphism

Ext(g,T)
∼−→ HomOT

(ob(g), 0(g))

of sheaves onTét. In particular, extensions ofg to T exist, if and only ifob(g)
is A1-equivariantly isomorphic to 0(g).

Proof. Locally, we may embedX into a smooth schemeM and call the em-
bedding i : X → M , the conormal sheafI /I 2. Then there always exist local
extensionsh : T → M of i ◦ g : T → M .

T −→ T
g ↓ ↓ h

X
i−→ M

Any suchh gives rise to a homomorphismh] : g∗I /I 2 → J , and hence to a real-
ization of ob(g) as the morphism of cone stacks induced by the homomorphism
of complexes

h] : g∗[I /I 2 → i ∗ΩM ] −→ [J → 0].

Note that ifh̃ is another such extension, the difference betweenh andh̃ induces
a homomorphismg∗i ∗ΩM → J , which is in fact a homotopy fromh] to h̃].

Now let g : T → X be an extension ofg. Then (i ◦ g)] = 0, so that we
get a homotopy from any localh] as above to 0, or in other words a local
A1-equivariant isomorphism fromob(g) to 0(g). Since these local isomorphisms
glue, we get the required map

Ext(g,T) −→ Hom(ob(g), 0(g)).

To construct the inverse, letθ : ob(g) → 0(g) be a 2-isomorphism of cone
stacks. Note thatθ defines for every localh as above an extension ofh] to

h
]

: i ∗ΩM → J (use Lemma 1.6). Changingh by h
]

definesh′ : T → M such
that (h′)] = 0. Thush′ factors throughX, and in fact these locally definedh′

glue to give the required extensiong : T → X. ut
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Proposition 4.2 There is a canonical isomorphism

Aut(0(g))
∼−→ Hom(g∗ΩX , J )

of sheaves onTét.

Proof. Again, Lemma 1.6 shows that the automorphisms of 0(g) are (locally) the
homomorphisms fromg∗i ∗ΩM to J vanishing ong∗I /I 2. The exact sequence

I /I 2 −→ i ∗ΩM −→ ΩX −→ 0

finishes the proof. See also Lemma 2.2.ut
Corollary 4.3 The sheafHom(ob(g), 0(g)) is a formal Hom(g∗ΩX , J )-torsor.
So if ob(g) ∼= 0(g), the setHom(ob(g), 0(g)) is a torsor under the group
Hom(g∗ΩX , J ).

Note Combining this with Proposition 4.1 gives that Ext(g,T) is a Hom(g∗Ω, J )-
torsor if the obstruction vanishes, reproving this fact from deformation theory
alluded to above.

Obstruction theories

Definition 4.4 Let E• ∈ obD(OXét) satisfy (?) (see Definition 2.3). Then a homo-
morphismφ : E• → L•X in D(OXét) is called anobstruction theoryfor X , if h0(φ)
is an isomorphism and h−1(φ) is surjective. By abuse of language we also say
that E• is an obstruction theory for X .

Note By Proposition 2.6 the homomorphismφ : E• → L•X is an obstruction
theory if and only if

φ∨ : NX −→ E

is a closed immersion, whereE = h1/h0((E•
fl )∨). So if E• is an obstruction theory

andCX ⊂ NX is the intrinsic normal cone ofX, thenφ∨(CX ) is a closed subcone
stack ofE of pure dimension zero. We sometimes callφ∨(CX ) the obstruction
coneof the obstruction theoryφ : E• → L•X .

Let E• ∈ obE(OXét) satisfy (?) and letφ : E• → L•X be a homomorphism.
Let E = h1/h0((E•

fl )∨) andφ∨ : NX → E the induced morphism of cone stacks.
If T → T is a square zero extension ofk-schemes with ideal sheafJ and
g : T → X is a morphism, then we denote byφ∗ω(g) the image of the obstruction
ω(g) ∈ Ext1(g∗L•X , J ) in Ext1(g∗E•, J ) and byφ∨(ob(g)) the composition

C(J )
ob(g)−→ g∗NX

g∗φ∨−→ g∗E

of morphisms of cone stacks overT.
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Theorem 4.5 The following are equivalent.

1. φ : E• → L•X is an obstruction theory.
2. φ∨ : NX → E is a closed immersion of cone stacks over X .
3. For any(T,T, g) as above, the obstructionφ∗(ω(g)) ∈ Ext1(g∗E•, J ) vanishes

if and only if an extensiong of g to T exists; and ifφ∗(ω(g)) = 0, then the
extensions form a torsor underExt0(g∗E•, J ) = Hom(g∗h0(E•), J ).

4. For any(T,T, g) as above, the sheaf of extensionsExt(g,T) is isomorphic to
the sheafHom(φ∨(ob(g)), 0) ofA1-equivariant isomorphism fromφ∨(ob(g)) :
C(J ) → g∗E to the vertex0 : C(J ) → g∗E.

Proof. The equivalence of (1) and (2) has already been noted. In view of Propo-
sition 4.1 it is clear that (2) implies (4). The implication (4)⇒(3) follows from
Lemma 2.2. So let us prove that (3) implies (1).

To prove thath0(φ) is an isomorphism we can assume thatX = SpecR is
an affine scheme (as the statement is local); letA be anyR-algebra,M any A-
module. LetT = SpecA, T = Spec(A⊕ M ), where the ring structure is given
by (a,m)(a′,m′) = (aa′, am′ + a′m). Let g : T → X be the morphism induced
by the R-algebra structure ofA. Then g extends toT, so there is a bijection
Hom(h0(L•X )⊗ A,M ) → Hom(h0(E•)⊗ A,M ). This implies easily thath0(φ) is
an isomorphism.

The fact thath−1(φ) is surjective is local in théetale topology (and only
depends onτ≥−1E•). Assume therefore thatX is an affine scheme,i : X → W
a closed embedding in a smooth affine schemeW, and letI be the ideal ofX in
W. We can assume thatE0 = f ∗ΩW (see the proof of 2.5), thatE−1 is a coherent
sheaf, and thatEi = 0 for i /= 0,−1.

We have to prove thatE−1 → I /I 2 is surjective; letM be its image. Let
T = X, M̃ ⊂ I the inverse image ofM , andT ⊂ W the subscheme defined by
M̃ ; let g : T → X be the identity. We can extendg to the inclusioñg : T → W.
Let π : I /I 2 → I /M̃ be the natural projection. By assumptionπ factors viaE0

if and only if g extends to a mapT → X, if and only if π ◦ φ−1 : E−1 → I /M̃
factors viaE0. As π ◦ φ−1 is the zero map, it certainly factors. Thereforeπ also
factors. Consider now the commutative diagram with exact rows

E−1 −→ E0 −→ h0(E•) −→ 0
φ ↓ ‖ ‖
I /I 2 −→ E0 −→ h0(E•) −→ 0.

By an easy diagram chasing argument, the fact thatπ factors viaE0 together
with π ◦ φ−1 = 0 impliesπ = 0, henceφ−1 : E−1 → I /I 2 is surjective. ut

Obstructions for small extensions

Let Art be the category of local Artiniank-algebras with residue fieldk, and
assumek is algebraically closed. Asmall extensionwill be a surjective morphism
A′ → A in Art with kernel J isomorphic tok. A semi-smallextension is one
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with kernel isomorphic to ak-vector space as anA′-module. A small extension
is calledcurvilinear, if it is isomorphic tok[t ]/tn+1 → k[t ]/tn, for somen > 0.

Let F : Art → Setsbe a pro-representable covariant functor (in the sense of
[14]). An obstruction spacefor F is ak-vector spaceT2 and, for any semi-small
extensionA′ → A with kernelJ , an exact sequence

F (A′) −→ F (A)
ob−→ T2 ⊗ J .

This means that, for allξ ∈ F (A), ξ is in the image ofF (A′) if and only if
ob(ξ) = 0. It is also required thatob is functorial in the obvious sense (see [11]).
We say thatv ∈ T2 obstructs a small extension A′ → A if ob(ξ) = v ⊗ w for
someξ ∈ F (A) and some nonzerow ∈ J .

Let X be a Deligne-Mumford stack,p ∈ X a fixed point with residue field
k. Let hp : Art → Setsbe the covariant functor associating to an objectA of Art
the set of morphisms SpecA → X sending the closed point top. The functor
hp is pro-representable, and it is unchanged if we replaceX by any étale open
neighborhood ofp.

Let Np = p∗NX , and letN p be the coarse moduli space ofNp. Note thatN p =
T1

X,p, so thatN p is in fact ak-vector space. HereTi
X,p = hi (p∗T•

X ) = hi (p∗L•X )
∨

are the ‘higher tangent spaces’ ofX at p. Let Cp ⊂ N p be the subcone coarsely
representingp∗CX . Proposition 4.1 implies thatN p is an obstruction space for
hp. The following is probably known but we include a proof for lack of a suitable
reference; it is a version of Theorem 4.5 for semi-small extensions.

Lemma 4.6 The spaceN p is a universal obstruction space forhp; that is, for
any other obstruction spaceT2, there is a unique injectionN p → T2 compatible
with the obstruction maps.

Proof. Let (U ,W) be a local embedding forX nearp. Assume thatW = SpecP,
U = SpecR = SpecP/I ; let m be the maximal ideal ofp in P, and assume that
I ⊂ m2. In this caseN p = (I /mI )∨.

If n is sufficiently large, the natural mapI /mI → (I +mn)/(mI +mn) is an
isomorphism; choose such ann. Let A′n → An be the extensionP/(mI +mn) →
P/(I +mn), and letξn ∈ hp(An) be the natural quotient map. Then ifT2 is any
obstruction space, the obstruction toξn gives a linear map (I /mI )∨ → T2 which
must be injective. It is easy to check by functoriality that taking a differentn
does not change the map. But given any semi-small extensionA′ → A, there
is always an extension of the typeA′n → An mapping to it, so one can apply
functoriality again. ut
Proposition 4.7 Everyv ∈ N p obstructs some small extension; it obstructs some
small curvilinear extension if and only ifv ∈ Cp.

Proof. Keeping the notation of the previous proof, letv ∈ N p, and view it as
a P-linear mapI → k having mI in the kernel; we prove first thatv is an
obstruction for some small extension. LetL = kerv, and choosen sufficiently
large, so thatL +mn /= I +mn. Let A = P/I +mn, andA′ = P/L +mn; choose
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ξ : R → A to be the natural surjection. LetJ = ker(A′ → A); J is naturally
isomorphic toI /L. Then obξ : I /mI → J is the obvious map, and the image of
the dual map inN p is the vector space generated byv.

The projectivization ofCp is the fiber overp of the blowupW̃ of W along
U . Every nontrivial curvilinear obstruction can be viewed as follows: extend the
map Speck[t ]/tn+1 → W to Speck[[ t ]]. This lifts to a map Speck[[ t ]] → W̃,
and the obstruction is (up to scalar) the image of 0 in Speck[[ t ]]. The proof then
follows the argument of Proposition 20.2 in [8].ut

5 Obstruction theories and fundamental classes

Virtual fundamental classes

As usual, letX be a Deligne-Mumford stack overk.

Definition 5.1 We call an obstruction theory E• → L•X perfect, if E• is of perfect
amplitude contained in[−1, 0].

Now assume thatX is separated (or, more generally, satisfies the condition
of Vistoli in [15]). We shall denote byAk(X) the rational Chow group of cycles
of dimensionk on X modulo rational equivalence tensored withQ (see [ibid]).
We shall also use the corresponding bivariant groupsAk(X → Y), for morphisms
X → Y of separated Deligne-Mumford stacks.

Let E• be a perfect obstruction theory forX, and letCX ↪→ h1/h0(E∨) be
the intrinsic normal cone. We call rkE• the virtual dimensionof X with respect
to the obstruction theoryE•. Recall that rkE• = dimE0−dimE−1, if locally E•

is written as a complex of vector bundles [E−1 → E0]. This is a well-defined
locally constant function onX. We shall assume that the virtual dimension ofX
with respect toE• is constant, equal ton.

To construct thevirtual fundamental class[X,E•] ∈ An(X) of X with respect
to the obstruction theoryE•, we would like to simply intersect the intrinsic
normal coneCX with the vertex (zero section) ofh1/h0(E∨). Sinceh1/h0(E∨)
is smooth of relative dimension−n over X, the codimension ofX in h1/h0(E∨)
is −n, so that the dimension of the intersection ofCX with X is 0− (−n) = n.
Unfortunately, this construction would require Chow groups for Artin stacks,
which we do not have at our disposal. This is why we shall make the assumption
that E• has global resolutions.

Definition 5.2 Let F• = [F−1 → F 0] be a homomorphism of vector bundles on
X considered as a complex ofOX-modules concentrated in degrees−1 and0. An
isomorphism F• → E• in D(OXét) is called aglobal resolution of E•.

Let F • be a global resolution ofE•. Then

h1/h0(E∨) = [F−1∨/F 0∨],
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so thatF1 = F−1∨ is a (global) presentation ofh1/h0(E∨). Let C(F •) be the
fibered product

C(F •) −→ F1

↓ ↓
CX −→ h1/h0(E∨).

Then C(F •) is a closed subcone of the vector bundleF1. We define thevirtual
fundamental class[X,E•] to be the intersection ofC(F •) with the zero section
of F1. Note thatC(F •) → CX is smooth of relative dimension rkF0 (where
F0 = F 0∨), so thatC(F •) has pure dimension rkF0 and [X,E•] then has degree

rk F0 − rk F1 = rk E• = n.

Proposition 5.3 The virtual fundamental class [X,E•] is independent of the
global resolutionF • used to construct it.

Proof. Let H • be another global resolution ofE•. Without loss of generality
assume thatH • → E• and F • → E• are given by morphisms of complexes.
Then we get an induced homomorphismH 0⊕ F 0 → E0. So by constructing the
cartesian diagram

K−1 −→ H 0 ⊕ F 0

↓ ↓
E−1 −→ E0,

and lettingK 0 = H 0 ⊕ F 0, we get a global resolutionK • of E• such that both
H • andF • map toK • by a strict monomorphism. So it suffices to compareF •

with K •. Dually, we have an epimorphismK1 → F1. Consider the diagram

X
0−→ C(H •) −→ C(F •)

↓ ↓ ↓
X

0−→ K1
α−→ F1,

in which both squares are cartesian. Note thatα is smooth. The virtual funda-
mental class usingF • is equal to

(α ◦ 0)![C(F •)] = 0!α! [C(F •)] = 0![C(H •)],

which is the virtual fundamental class usingH •. ut
Example If X is a complete intersection, thenL•X is of perfect amplitude con-
tained in [−1, 0], so thatL•X itself is a perfect obstruction theory. Any embedding
of X into a smooth Deligne-Mumford stack gives rise to a global resolution of
L•X .The virtual fundamental class [X, L•X ] thus obtained is equal to [X], the ‘usual’
fundamental class.

Remark 5.4 (Virtual structure sheaves) Let X be a Deligne-Mumford stack
and letC ↪→ E be a closed subcone stack of a vector bundle stack. Then we
define a graded commutative sheaf of coherentOX -algebrasO(C,E) as follows.

If E ∼= [E1/E0], thenC induces a coneC in E1 and we set
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O i
(C,E) = T or

OE1
i (OC ,OX ),

where we think ofOX as anOE1-algebra via the zero section ofE1. Standard
arguments show that

O(C,E) =
⊕

i

O i
(C,E)

is independent of the choice of presentationE ∼= [E1/E0]. Hence the locally
defined sheaves glue, giving rise to a globally defined sheaf.

If C = CX , E• is a perfect obstruction theory ofX andE = h1/h0(E•∨), we
call O(C,E) the virtual structure sheafof X with respect to the obstruction theory
E•, denotedO(X,E•). This seems to be the virtual structure sheaf proposed by
Kontsevich in [12].

If one has onX a homological Chern characterτ : K0(X) → A∗(X) one can
define the virtual fundamental class ofX with respect toE• by

[X,E•] = td(E•) ∩ τ (O(X,E•)).

This agrees with the above definition using global resolutions if they exist. In
the absence of a general Riemann Roch theorem, we rather assume the existence
of global resolutions.

Basic properties

Proposition 5.5 (No obstructions) If E• is perfect,h0(E•) is locally free and
h1(E•) = 0, thenX is smooth, the virtual dimension ofX with respect toE• is
dimX and the virtual fundamental class [X,E•] is just [X], the usual fundamental
class. ut
Proposition 5.6 (Locally free obstructions) Let X be smooth andE• a perfect
obstruction theory forX. Thenh1(E•∨) is locally free and the virtual fundamental
class is

[X,E•] = cr (h1(E•∨)) · [X],

wherer = rk h1(E•∨).

Proof. To see this, note that ifF • is a global resolution ofE•, then C(F •) =
im(F0 → F1). ut
Proposition 5.7 (Products) Let E → LX be a perfect obstruction theory forX
and F → LY a perfect obstruction theory forY . Then LX×Y = LX � LY . The
induced homomorphismE � F → LX � LY is a perfect obstruction theory for
X × Y . If E andF have global resolutions, then so doesE � F and we have

[X × Y ,E � F ] = [X,E] × [Y ,F ]

in Ark E+rk F (X × Y).
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Proof. The statement about cotangent complexes is [10], Chapitre II, Corollaire
3.11. To prove the rest, use Proposition 3.13.ut

Consider a cartesian diagram of Deligne-Mumford stacks

X ′ u−→ X
g ↓ ↓ f

Y ′ v−→ Y ,

(11)

wherev is a local complete intersection morphism. LetE → LX and F → LX′

be perfect obstruction theories forX andX ′, respectively.

Definition 5.8 A compatibility datum (relative to v) for E and F is a triple
(φ, /υ, χ) of morphisms in D(OX′ ) giving rise to a morphism of distinguished tri-
angles

u∗E
φ−→ F

/υ−→ g∗LY′/Y
χ−→ u∗E[1]

↓ ↓ ↓ ↓
u∗LX −→ LX′ −→ LX′/X −→ u∗LX [1].

Given a compatibility datum, we call E and Fcompatible (overv).

Assume thatE and F are endowed with such a compatibility datum. Then
we get (Proposition 2.7) a short exact sequence of vector bundle stacks

g∗h1/h0(T•
Y′/Y ) −→ h1/h0(F∨) −→ u∗h1/h0(E∨)

which we shall abbreviate by

g∗NY′/Y −→ F
φ−→ u∗E.

If v is a regular local immersion, thenNY′/Y = NY′/Y is the normal bundle
of Y ′ in Y . Its pullback toX ′ we shall denote byN .

Lemma 5.9 If Y andY ′ are smooth andv a regular local immersion, then there
is a (canonical) rational equivalenceβ(Y ′,X) ∈ W∗(N × F) such that

∂β(Y ′,X) = [φ∗Cu∗CX/CX
] − [N × CX′ ].

Proof. Let X → M be a local embedding, whereM is smooth. We get an induced
cartesian diagram

X ′ −→ X
↓ ↓

Y ′ ×M −→ Y ×M ,

which we enlarge to

N ×X C −→ u∗C −→ C
↓ ↓ ↓
N −→ X ′ u−→ X
↓ j ↓ ↓ i

NY′/Y ×M
ρ−→ Y ′ ×M

v−→ Y ×M ,
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whereC is the normal cone ofX in Y ×M . As in Sect. 3 we have a canonical
rational equivalenceβ(Y ′ ×M ,X) ∈ W∗(N ×X C) such that

∂β(Y ′ ×M ,X) = [Cu∗C/C ] − [N × CX′/Y′×M ].

By Proposition 3.5β(Y ′×M ,X) is invariant under the action ofN ×u∗i ∗TY×M

on N ×X C . So it descends toN ×X CX . In particular,β(Y ′×M ,X) is invariant
under the subsheafN × j ∗TY′×M and thus descends toN × [u∗C/j ∗TY′×M ].
Note that [u∗C/j ∗TY′×M ] = F ×E CX , which is a closed subcone stack ofF.
So pushing forward via this closed immersion, we get a rational equivalence on
N × F which we denote byβ(Y ′,X). We have

∂β(Y ′,X) = [φ∗Cu∗CX/CX
] − [N × CX′ ]

as required. Now use Proposition 3.4 to show thatβ(Y ′,X) does not depend on
the choice of the local embeddingX → M . So even if no global embedding
exists, the locally defined rational equivalences glue, proving the lemma.ut
Proposition 5.10 (Functoriality) Let E andF be compatible perfect obstruction
theories, as above. IfE andF have global resolutions then

v! [X,E] = [X ′,F ]

holds in the following cases.

1. v is smooth,
2. Y ′ andY are smooth.

Proof. First note that one may choose global resolutions [E0 → E1] of E∨ and
[F0 → F1] of F∨ together with a pair of epimorphismsφ0 : F0 → u∗E0 and
φ1 : F1 → u∗E1 such that

F0
φ0−→ u∗E0

↓ ↓
F1

φ1−→ u∗E1

commutes. LettingGi be the kernel ofφi we get a short exact sequence of
homomorphisms of vector bundles

0 −→ G0 −→ F0 −→ u∗E0 −→ 0
↓ ↓ ↓

0 −→ G1 −→ F1 −→ u∗E1 −→ 0.

The induced short exact sequence

[G1/G0] −→ [F1/F0] −→ [u∗E1/u∗E0]

of vector bundle stacks is isomorphic tog∗NY′/Y → F → E. We let C1 =
CX ×E E1 and D1 = CX′ ×F F1. Then [X,E] = 0!

E1
[C1] and [X ′,F ] = 0!

F1
[D1],

where 0E1 and 0F1 are the zero sections ofE1 andF1, respectively.
If v is smooth, then by Proposition 3.14 the diagram
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CX′ −→ u∗CX

↓ ↓
F −→ u∗E

is cartesian, which implies that

D1 −→ u∗C1

↓ ↓
F1 −→ u∗E1

is cartesian. Hence 0!
u∗E1

[u∗C1] = 0!
F1

[D1] and we have

v! [X,E] = v!0!
E1

[C1]

= 0!
u∗E1

[u∗C1]

= 0!
F1

[D1]

= [X ′,F ].

If Y ′ and Y are smooth, let us first treat the case thatv is a regular local
immersion. Then we may chooseF1 as the fibered product

F1 −→ E1

↓ ↓
F

φ−→ E.

Lifting the rational equivalenceβ(Y ′,X) of Lemma 5.9 toN × F1 we get that

[N × D1] = φ∗[Cu∗C1/C1
]

in A∗(N × F1). Then we have

[X ′,F ] = 0!
F1

[D1]

= 0!
N×F1

[N × D1]

= 0!
N×F1

φ∗[Cu∗C1/C1
]

= 0!
N×u∗E1

[Cu∗C1/C1
]

= 0!
∗E1

v! [C1]

= v!0!
E1

[C1]

= v! [X,E].

In the general case factorv as

Y ′ Γv−→ Y ′ × Y
p−→ Y .

Then Diagram 11 factors as

X ′ −→ Y ′ × X −→ X
↓ ↓ ↓

Y ′ Γv−→ Y ′ × Y
p−→ Y .
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SinceY ′ is smooth it has a canonical obstruction theory, namelyΩY′ . As ob-
struction theory onY ′ × X take ΩY′ � E. ThenΩY′ � E is compatible with
E over p and F is compatible withΩY′ � E over Γv. So combining Cases (1)
and (2) yields the result. ut

6 Examples

The basic example

Assume that

X
j−→ V

g ↓ ↓ f

Y
i−→ W

is a cartesian diagram of schemes, thatV andW are smooth and thati is a regular
embedding. LetE• be the complex [g∗NY/W

∨ → j ∗ΩV ] (in degrees−1 and 0),
where the map is given by pulling back toX and composingNY/W

∨ → i ∗ΩW

with f ∗ΩW → ΩV . The complexE• has a natural morphism toL•X , induced
by g∗L•Y → L•X and j ∗L•V → L•X (note thatE• is the cokernel ofg∗i ∗L•W →
j ∗L•V ⊕ g∗L•Y , where the first component is the negative of the canonical map).

This makesE• into a perfect obstruction theory forX; the virtual fundamental
class [X,E•] is just i ! [V ] as defined in [6], p. 98. The construction also works
in caseX, Y , V andW are assumed to be just Deligne-Mumford stacks.

Fibers of a morphism between smooth stacks

Let f : V → W be a morphism of algebraic stacks. We shall assume thatV and
W are smooth overk and thatf has unramified diagonal, so thatV is a relative
Deligne-Mumford stack overW. Let w : Speck → W be ak-valued point ofW
and letX be the fiber off overw. In this situationX has an obstruction theory
as follows.

Choose a smooth morphism̃W → W, with W̃ a scheme, and a lifting̃w :
Speck → W̃ of w (assumek algebraically closed). Let̃V be the fiber product
V ×W W̃; by the assumptions̃V is a smooth Deligne-Mumford stack. ThenX
is isomorphic to the fiber over̃w of Ṽ → W̃, hence it has an obstruction theory
as above.

To check that the obstruction theory so defined does not depend on the choices
made, it is enough to compare two different ones induced by a smooth morphism
of schemes̃W ′ → W̃; this is then a straightforward verification. Similarly, one
generalizes to the case of arbitrary ground fieldk.

See Example for an alternative construction.



82 K. Behrend, B. Fantechi

Moduli stacks of projective varieties

Let M and X be Deligne-Mumford stacks. Letp : M → X be a flat, relatively
Gorenstein projective morphism: by this we mean that it has constant relative
dimension and that the relative dualizing complexω•M/X = ω is a line bundle in

degree− dimM /X. For G• ∈ Db
qc(OX ), one hasp!G• = p∗G• ⊗ ω. For every

F • ∈ D−
qc(OM ) and G• ∈ Db

qc(OX ), and for every integerk, there are canonical
isomorphisms Extk

OM
(F •, p!G•) → ExtkOX

(Rp∗F •,G•). (See [9], Sect. VII.4.)

Lemma 6.1 Let p : M → X be a flat, projective, relatively Gorenstein morphism
of Deligne-Mumford stacks. For any cartesian diagram

N
g−→ M

q ↓ ↓ p

T
f−→ X,

(12)

for any F • ∈ D−
qc(OM ) andG• ∈ Db

qc(OT ), there is a canonical isomorphism

ExtkON
(g∗F •, q∗G•) −→ ExtkOT

(f ∗(Rp∗(F • ⊗ ω)),G•).

Proof. Sincep is flat, we have that

ExtkON
(g∗F •, q∗G•) = ExtkOM

(F •,Rg∗q∗G•) = ExtkOM
(F •, p∗Rf∗G•).

Tensoring withω induces isomorphisms

ExtkOM
(F •, p∗Rf∗G•) −→ ExtkOM

(F • ⊗ ω, p!Rf∗G•)

= ExtkOX
(Rp∗(F • ⊗ ω),Rf∗G•)

= ExtkOT
(f ∗Rp∗(F • ⊗ ω),G•). ut

Define the complexE• on X to beRp∗(L•M/X⊗ω)[−1]. The Kodaira-Spencer
mapLM/X → p∗LX [1] induces a morphismφ : E• → L•X .

Proposition 6.2 Let p : M → X be a flat, projective, relatively Gorenstein
morphism of Deligne-Mumford stacks, and assume that the familyM is universal
at every point ofX (e.g.,X is an open set in a (fine) moduli stack andM is the
universal family). Thenφ : E• → L•X is an obstruction theory forX.

Proof. Let T be a scheme,f : T → X a morphism, and consider the cartesian
diagram (12). IfT → T̄ is a square zero extension with ideal sheafJ , the
obstruction to extendingN to a flat family overT̄ lies in Ext2(L•N/T , q

∗J ), and

the extensions, if they exist, are a torsor under Ext1(L•N/T , q
∗J ). The fact that

the family M is universal at every point implies that the fibers ofp have finite
and reduced automorphism group, henceE• satisfies (?).

The mapE• → L•X induces morphisms

φk : Extk−1
OT

(f ∗L•X ,J ) → Extk−1
OT

(f ∗E•,J ) = ExtkON
(L•N/T , q

∗J ),
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where the latter equality is Lemma 6.1 together with the fact thatL•N/T = g∗L•M/X

asp is flat. The universality ofM means that extendingN to a family overT̄ is
equivalent to extendingf to a morphism toX defined onT̄. Hence by Theorem
4.5,φ is an obstruction theory forX. ut
Remark If p is smooth of relative dimension≤ 2, thenE• is a perfect obstruction
theory.

Spaces of morphisms

Let C and V be projectivek-schemes. LetX = Mor(C ,V ) be thek-scheme of
morphisms fromC to V (see [7]). Letf : C×X → V be the universal morphism
andπ : C ×X → X the projection. By the functorial properties of the cotangent
complex we get a homomorphism

f ∗L•V −→ L•C×X −→ L•C×X/C

and a homomorphism
π∗L•X −→ L•C×X/C .

The latter is an isomorphism so that we get an induced homomorphism

e : f ∗L•V −→ π∗L•X .

Assume thatC has a dualizing complexωC , and let

E• = Rπ∗(f ∗L•V ⊗ ω) = (Rπ∗(f ∗T•
V ))∨.

As in the previous example,e induces a morphism

π∗(e∨)∨ : E• −→ L•X .

Proposition 6.3 Assume thatC is Gorenstein. Then the homomorphismφ :=
π∗(e∨)∨ is an obstruction theory forX. If C is a curve andV is smooth then
this obstruction theory is perfect.

Proof. Let T be an affine scheme,g : T → X a morphism,J a coherent sheaf
on T; let p : C × T → T be the projection,h : C × T → V the morphism
induced byg.

Applying Lemma 6.1, one gets

ExtkOC×T
(h∗L•V , p

∗J ) = ExtkOC
(g∗E•,J ).

Apply now Theorem 4.5, more precisely the equivalence between (1) and (3).
Choose any square zero extensionT̄ of T with ideal sheafJ . Theng extends to
ḡ : T̄ → X if and only if h extends toh̄ : C × T̄ → V , if and only if φ∗ω(g) is
zero in Ext1OC×T

(h∗L•V , p
∗J ). The extensions, if they exist, form a torsor under

HomOC×T (h∗L•V , p
∗J ). ut



84 K. Behrend, B. Fantechi

7 The relative case

Bivariant theory for artin stacks

For what follows, we need a little bivariant intersection theory for algebraic
stacks that are not necessarily of Deligne-Mumford type.

For simplicity, let us assume thatf : X → Y is a morphism of algebraic
k-stacks which is representable. This assumption implies that whenever

X ′ −→ Y ′

↓ ↓
X

f−→ Y

is a cartesian diagram andY ′ is a Deligne-Mumford stack satisfying the condition
needed to define its Chow group (see [15]), thenX ′ is of the same type. The
following remarks can be generalized to any morphismf satisfying this property,
e.g. anyf which has finite unramified diagonal.

For such anf : X → Y we define bivariant groupsA∗(X → Y) by using the
same definition as Definition 5.1 in [15]. Then just as in [ibid.] one proves that
the elements ofA∗(X → Y) act on Chow groups of Deligne-Mumford stacks.

The same definition as [ibid.] Definition 3.10 applies in casef : X → Y is
a regular local immersion, and defines a canonical element [f ] ∈ A∗(X → Y)
whose action on cycle classes is denoted byf ! . This is justified, since Theo-
rems 3.11, 3.12, and 3.13 from [ibid.] hold with the same proofs in this more
general context. In fact, [f ] even commutes with the Gysin morphism for any
other local regular immersion of algebraic stacks.

Similarly, if f : X → Y is flat, flat pullback of cycles defines a canonical
orientation [f ] ∈ A∗(X → Y).

The relative intrinsic normal cone

We shall now replace the base Speck by an arbitrary smooth (or more generally
pure dimensional, but always of constant dimension) algebraick-stack Y (not
necessarily of Deligne-Mumford type). We shall consider algebraic stacksX over
Y which are of relative Deligne-Mumford type overY , i.e. such that the diagonal
X → X ×Y X is unramified. This assures thathi (L•X/Y ) = 0, for all i > 0 (i.e.

h1(L•X/Y ) = 0), so thatLX/Y satisfies Condition (?).
The relative intrinsic normal sheafNX/Y is defined as

NX/Y = h1/h0(T•
X/Y ).

Using local embeddings ofX into schemes smooth overY , we construct as in the
absolute case a subcone stackCX/Y ⊂ NX/Y called therelative intrinsic normal
coneof X over Y . If n = dimY , thenCX/Y is of pure dimensionn.
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The definition of arelative obstruction theoryis the same as Definition 4.4,
with L•X replaced byL•X/Y . As in the absolute case the relative intrinsic normal
cone embeds as a closed subcone stack of a vector bundle stack

CX/Y ⊂ h1/h0(E∨),

if E is a perfect relative obstruction theory. (Note that ‘perfect’ means ‘absolutely
perfect’.)

So let E be a perfect obstruction theory forX over Y admitting global
resolutions. IfX is a separated Deligne-Mumford stack then we get a virtual
fundamental class [X,E•] ∈ An+rk E(X) by ‘intersectingCX with the vertex of
h1/h0(E∨)’ as in the discussion preceding Proposition 5.3.

Consider the following diagram, whereY and Y ′ are smooth of constant
dimension,v has finite unramified diagonal andX andX ′ are separated Deligne-
Mumford stacks.

X ′ u−→ X
↓ ↓

Y ′ v−→ Y
(13)

Proposition 7.1 There is a natural morphism

α : CX′/Y′ −→ CX/Y ×Y Y ′.

If (13) is cartesian, thenα is a closed immersion. If, moreover,v is flat, thenα
is an isomorphism.

Proof. Both statements follow immediately from the corresponding properties of
normal cones for schemes.ut
Proposition 7.2 (Pullback) Let E → LX/Y be a perfect obstruction theory for
X over Y . If (13) is cartesian thenu∗E is a perfect obstruction theory forX ′

over Y ′. If E has global resolutions so doesu∗E and for the induced virtual
fundamental classes we have

v! [X,E] = [X ′, u∗E],

at least in the following cases.

1. v is flat,
2. v is a regular local immersion.

Proof. Let E−1 → E0 be a global resolution ofE• andC the cone induced by
CX/Y in E1. Let u∗Ei = E′

i , andD the cone induced byCX′/Y′ in E′
1.

If v is flat we haveCX′/Y′ = v∗CX/Y and henceD = v∗C by Proposition 7.1
and the statement follows from the fact thatv! is a bivariant class; in this case
that v! commutes with 0!E1

, where 0 :X → E1 is the zero section.
If v is a regular local immersion, letN = NY′/Y and use Vistoli’s rational

equivalence
β(Y ′,X) ∈ W∗(N ×Y C)

(see Proposition 3.3) to prove thatv! [C ] = [D ]. Then proceed as before.ut
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The following are relative versions of the basic properties of virtual funda-
mental classes from Sect. 5.

Proposition 7.3 (Locally free obstructions) Let E• be a perfect relative ob-
struction theory forX over Y Assume thatE• has global resolutions andX is a
separated Deligne-Mumford stack, so that the virtual fundamental class [X,E•]
exists.

1. If h−1(E•) = 0, thenX is smooth overY and [X,E•] = [X].
2. If X is smooth overY , thenh1(E∨) is locally free and [X,E•] = cr (h1(E∨)) ·

[X], wherer = rk h1(E∨).

Proof. The proofs are the same as in the absolute case (Propositions 5.5 and
5.6). ut
Proposition 7.4 (Products) Let E be a perfect relative obstruction theory forX
over Y andF a perfect relative obstruction theory forX ′ over Y ′. ThenE � F
is a perfect relative obstruction theory forX ×X ′ over Y ×Y ′. If E andF have
global resolutions andX and X ′ are separated Deligne-Mumford stacks, then
E � F has global resolutions andX ×X ′ is a separated Deligne-Mumford stack
and we have

[X × X ′,E � F ] = [X,E] × [X ′,F ]

in Adim Y+dimY′+rk E+rk F (X × X ′).

Let E be a perfect relative obstruction theory forX over Y andF a perfect
relative obstruction theory forX ′ over Y . Let v : Z ′ → Z be a local complete
intersection morphism ofY-stacks that have finite unramified diagonal overY .
Let there be given a cartesian diagram

X ′ u−→ X
g ↓ ↓ f

Z ′ v−→ Z

of Y-stacks. ThenE andF arecompatible overv if there exists a homomorphism
of distinguished triangles

u∗E −→ F −→ g∗LZ′/Z −→ u∗E[1]
↓ ↓ ↓ ↓

u∗LX/Y −→ LX′/Y −→ LX′/X −→ u∗LX/Y [1].

in D(OX′ ).

Proposition 7.5 (Functoriality) If E andF are compatible overv, then

v! [X,E] = [X ′,F ],

at least ifv is smooth orZ ′ andZ are smooth overY .

Proof. The proof is the same as that of Proposition 5.10.ut
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Example Consider a cartesian diagram

X
j−→ V

g ↓ ↓ h

Y
i−→ W

of algebraic stacks, wherei and j are local immersions andh has unramified
diagonal. We have a canonical homomorphism

φ : j ∗LV/W −→ LX/Y ,

which makesj ∗LV/W a relative obstruction theory forX over Y . To see this, it
suffices to prove thath−1(F •) = h0(F •) = 0, whereF • is the cone ofφ. But F •

is isomorphic to the cone of the homomorphism

g∗LY/W −→ LX/V ,

so this is indeed true.
Now if V andW are smooth, thenhi (LV/W) = 0 for all i 6= −1, 0 andj ∗LV/W

is a perfect obstruction theory. In particular, we get a virtual fundamental class

[X, j ∗LV/W ] ∈ Adim Y+dimV−dim W(X),

if Y is pure dimensional andX is a separated Deligne-Mumford stack.
If, in addition, i is a regular local immersion with normal bundleNY/W , the

normal coneCX/V of X in V is a closed subcone ofg∗NY/W and intersecting it
with the zero section 0 ofg∗NY/X gives a class

0![CX/V ] ∈ Adim Y+dimV−dim W(X).

The proof that
0![CX/V ] = [X, j ∗LV/W ]

is similar to the proof of Proposition 7.2.
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