Sine and Cosine

Recall that $p_{X}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ where $p_{X}(x, y)=x$ is the projection onto the x-axis, and that $p_{Y}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ where $p_{Y}(x, y)=y$ is the projection onto the y-axis.

$$
P_{r}(x, y)=y-\ldots e^{(x, y)}
$$

Examples:

- $p_{X}(2,8)=2$
- $p_{Y}(-3,5)=5$
- $p_{X}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)=\frac{1}{2}$

Definition of cosine

The cosine function is the function $\cos : \mathbb{R} \rightarrow \mathbb{R}$ defined as

Examples.

- $\cos \left(\frac{\pi}{6}\right)=p_{X} \circ$ wind $\left(\frac{\pi}{6}\right)=p_{X}\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)=\frac{\sqrt{3}}{2}$

- $\cos \left(\frac{\pi}{4}\right)=p_{X} \circ \operatorname{wind}\left(\frac{\pi}{4}\right)=p_{X}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}$

- $\cos \left(\frac{\pi}{3}\right)=p_{X} \circ \operatorname{wind}\left(\frac{\pi}{3}\right)=p_{X}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)=\frac{1}{2}$

Definition of sine

The sine function is the function $\sin : \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$
\sin (\theta)=p_{Y} \circ \operatorname{wind}(\theta)
$$

Examples.

- $\sin \left(\frac{\pi}{6}\right)=p_{Y} \circ \operatorname{wind}\left(\frac{\pi}{6}\right)=p_{Y}\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)=\frac{1}{2}$

- $\sin \left(\frac{\pi}{4}\right)=p_{Y} \circ \operatorname{wind}\left(\frac{\pi}{4}\right)=p_{Y}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\frac{1}{\sqrt{2}}$

- $\sin \left(\frac{\pi}{3}\right)=p_{Y} \circ \operatorname{wind}\left(\frac{\pi}{3}\right)=p_{Y}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)=\frac{\sqrt{3}}{2}$

Cosine and sine are the coordinates of wind

If $\theta \in \mathbb{R}$, then $\cos (\theta)$ is $p_{X} \circ$ wind (θ). That is, $\cos (\theta)$ is the x-coordinate of the point wind (θ). Similarly, $\sin (\theta)$ is the y-coordinate of the point wind (θ). Taken together, we have

$$
\operatorname{wind}(\theta)=(\cos (\theta), \sin (\theta))
$$

Throughout mathematics, the point on the unit circle obtained by beginning at the point $(1,0)$ and winding a length of θ is usually written as $(\cos (\theta), \sin (\theta))$, and that's the way we'll usually write it from now on.

It will be important to keep in mind that a point on the unit circle is a point of the form $(\cos (\theta), \sin (\theta))$, and that any point of the form $(\cos (\theta), \sin (\theta))$ is a point on the unit circle.

The next page contains a list of some common values of θ that arise in trigonometry, along with their values from cos and sin.

θ	$\operatorname{wind}(\theta)$	$\cos (\theta)$	$\sin (\theta)$
$\frac{-\pi}{6}$	$\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
0	$(1,0)$	1	0
$\frac{\pi}{6}$	$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{3}$	$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{2}$	$(0,1)$	0	1
$\frac{2 \pi}{3}$	$\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$	$-\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{3 \pi}{4}$	$\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$\frac{5 \pi}{6}$	$\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$	$-\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
π	$(-1,0)$	-1	0
$\frac{7 \pi}{6}$	$\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$

Graphs of sine and cosine

Identities for sine and cosine

An identity is an equation in one variable that is true for every possible value of the variable. For example, $x+x=2 x$ is an identity because it's always true. It does't matter whether x equals 1 , or 5 , or $-\frac{3}{5}$; it's always true that $x+x=2 x$.

The remainder of this chapter contains an assortment of important identities for the functions sine and cosine.

Lemma (7). (The Pythagorean identity) For any number θ,

$$
\cos (\theta)^{2}+\sin (\theta)^{2}=1
$$

Proof: The equation for the unit circle is $x^{2}+y^{2}=1$. Since $(\cos (\theta), \sin (\theta))$ is a point on the unit circle, it is a solution of this equation. That is,

$$
\cos (\theta)^{2}+\sin (\theta)^{2}=1
$$

Lemma (8). For any number θ,

$$
\sin \left(\theta+\frac{\pi}{2}\right)=\cos (\theta)
$$

Proof: The marked point on the y-axis in the picture on the left is $\sin \left(\theta+\frac{\pi}{2}\right)$. It's the y-coordinate of the point obtained by winding around the circle a distance of $\frac{\pi}{2}$ and then winding another θ more. We can rotate the picture on the left by a quarter turn clockwise, which would match $\sin \left(\theta+\frac{\pi}{2}\right)$ with the x-coordinate of the point obtained by winding around the circle a distance of θ, the number $\cos (\theta)$. Thus, $\sin \left(\theta+\frac{\pi}{2}\right)=\cos (\theta)$.

Lemma (9). For any number θ,

$$
\cos \left(\theta-\frac{\pi}{2}\right)=\sin (\theta)
$$

Proof: We'll use Lemma 8 to prove this lemma. Notice that Lemma 8 tells us

$$
\sin \left(\left[\theta-\frac{\pi}{2}\right]+\frac{\pi}{2}\right)=\cos \left(\left[\theta-\frac{\pi}{2}\right]\right)
$$

Simplifying, we have

$$
\sin (\theta)=\cos \left(\theta-\frac{\pi}{2}\right)
$$

which is what we had wanted to show.

Lemma (10). For any number θ,

$$
\cos (\theta+\pi)=-\cos (\theta) \quad \text { and } \quad \sin (\theta+\pi)=-\sin (\theta)
$$

Proof: The number π is exactly half the length of the unit circle. Therefore, the point $(\cos (\theta+\pi), \sin (\theta+\pi))$ is the point on the unit circle that is exactly halfway around the unit circle from the point $(\cos (\theta), \sin (\theta))$.

$$
(\cos (\theta+\pi), \sin (\theta+\pi))
$$

Also notice that the negative of the vector $(\cos (\theta), \sin (\theta))$, which is the vector $(-\cos (\theta),-\sin (\theta))$, is the vector that points in the opposite direction of $(\cos (\theta), \sin (\theta))$.

$$
(-\cos (\theta),-\sin (\theta))
$$

We can see in the two pictures above that the vectors drawn are the same. That is,

$$
(\cos (\theta+\pi), \sin (\theta+\pi))=(-\cos (\theta),-\sin (\theta))
$$

Because these vectors are equal, their first coordinates are equal

$$
\cos (\theta+\pi)=-\cos (\theta)
$$

and their second coordinates are equal.

$$
\sin (\theta+\pi)=-\sin (\theta)
$$

Lemma (11). For any number θ,

$$
\cos (-\theta)=\cos (\theta)
$$

Proof: Whether we wind clockwise around the circle a length of θ, or counterclockwise a length of θ, the x-coordinates will be the same. Which is to say that $\cos (\theta)=\cos (-\theta)$.

Lemma (12). For any number θ,

$$
\sin (-\theta)=-\sin (\theta)
$$

Proof: The picture on the left shows $\sin (\theta)$. The picture in the middle is the first picture flipped over the x-axis. All of the y-coordinates are exchanged with their negatives, so the picture in the middle shows $-\sin (\theta)$. The picture on the right shows $\sin (-\theta)$. Notice that the rightmost picture is the same picture as the one in the middle, and thus, $-\sin (\theta)=\sin (-\theta)$.

Even and odd functions

An even function is a function $f(x)$ that has the property $f(-x)=f(x)$ for every value of x. Examples of such functions include x^{2}, x^{4}, x^{6}, and by Lemma 11, $\cos (x)$.
An odd function is a function $g(x)$ that has the property $g(-x)=-g(x)$ for every value of x. Examples of such functions include x^{3}, x^{5}, x^{7}, and by Lemma 12, $\sin (x)$.

Period of sine and cosine

The period of the winding function is 2π, meaning that

$$
\operatorname{wind}(\theta)=\operatorname{wind}(\theta+2 \pi)
$$

Therefore,

$$
(\cos (\theta), \sin (\theta))=(\cos (\theta+2 \pi), \sin (\theta+2 \pi))
$$

Because these vectors are equal, their first coordinates are equal

$$
\cos (\theta)=\cos (\theta+2 \pi)
$$

and their second coordinates are equal

$$
\sin (\theta)=\sin (\theta+2 \pi)
$$

These last two identities show that sine and cosine are, just as the winding function, periodic functions. Their period is 2π.

Exercises

For \#1-14, identify the given value.
1.) $\cos \left(\frac{5 \pi}{4}\right)$
8.) $\sin \left(\frac{5 \pi}{4}\right)$
2.) $\cos \left(\frac{4 \pi}{3}\right)$
9.) $\sin \left(\frac{4 \pi}{3}\right)$
3.) $\cos \left(\frac{3 \pi}{2}\right)$
10.) $\sin \left(\frac{3 \pi}{2}\right)$
4.) $\cos \left(\frac{5 \pi}{3}\right)$
11.) $\sin \left(\frac{5 \pi}{3}\right)$
5.) $\cos \left(\frac{7 \pi}{4}\right)$
12.) $\sin \left(\frac{7 \pi}{4}\right)$
6.) $\cos \left(\frac{11 \pi}{6}\right)$
13.) $\sin \left(\frac{11 \pi}{6}\right)$
7.) $\cos (2 \pi)$
14.) $\sin (2 \pi)$

Suppose that α is a real number, that $0 \leq \alpha \leq \frac{\pi}{2}$, and that $\cos (\alpha)=\frac{2}{3}$. Use Lemmas $7-12$, and that the period of sine and cosine is 2π to find the following values.
15.) $\sin (\alpha)$
20.) $\cos (-\alpha)$
16.) $\sin \left(\alpha+\frac{\pi}{2}\right)$
21.) $\sin (-\alpha)$
17.) $\cos \left(\alpha-\frac{\pi}{2}\right)$
22.) $\cos (\alpha+2 \pi)$
18.) $\cos (\alpha+\pi)$
23.) $\sin (\alpha+2 \pi)$
19.) $\sin (\alpha+\pi)$

Match the numbered piecewise defined functions with their lettered graphs below.
24.) $f(x)= \begin{cases}\cos (x) & \text { if } x \geq 0 ; \\ \sin (x) & \text { if } x<0 .\end{cases}$
25.) $g(x)= \begin{cases}\sin (x) & \text { if } x \geq 0 ; \\ \cos (x) & \text { if } x<0 .\end{cases}$
26.) $h(x)= \begin{cases}\cos (x) & \text { if } x>0 ; \\ \sin (x) & \text { if } x \leq 0 .\end{cases}$
27.) $p(x)= \begin{cases}\sin (x) & \text { if } x>0 ; \\ \cos (x) & \text { if } x \leq 0 .\end{cases}$
A.)

B.)

C.)

D.)

For \#28-39, identify the given value.
28.) $\log _{2}(8)$
29.) $\log _{5}(125)$
30.) $\log _{3}(9)$
31.) $\log _{13}(13)$
32.) $\log _{9}(3)$
33.) $\log _{2}\left(\frac{1}{4}\right)$
34.) $\log _{6}\left(\frac{1}{6}\right)$
35.) $\log _{10}(10,000)$
36.) $\log _{7}(49)$
37.) $\log _{e}\left(e^{7}\right)$
38.) $\log _{e}(\sqrt{e})$
39.) $\log _{e}\left(\frac{1}{e}\right)$

Find the solutions of the equations given in \#40-42.
40.) $\frac{x-1}{x}-2 x=6$
41.) $\frac{x-1}{3 x+2}=4$
42.) $x+\frac{1}{x}=4$

