1. Find the Laurent Series centered at z=3i that converges at 3. In what region does your series converge?

$$f(z) = \frac{2z+7}{z^2+6z+5}.$$

2. Suppose that f(z) is analytic in a domain $D \subset \mathbf{C}$. Suppose also that the disk with center z_0 and radius R > 0 is contained in D. (If $|z - z_0| \le R$ then $z \in D$.) Show that $f(z_0)$ is the average of f over the circle $|z - z_0| = R$.

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{it}) dt.$$

3. (a) Find

$$\operatorname{Res}_{z=0} \frac{1}{\left(\sin z\right)^3}$$

(b) Suppose f(z) is analytic near z_0 and that z_0 is a zero of order n for f. Find

$$\operatorname{Res}_{z=z_0} \left[\frac{f'(z)}{f(z)} \right]$$

4. Show that by choosing a branch of square root and by making some branch cuts in \mathbb{C} , we can find a domain $D \in \mathbb{C}$ on which

$$g(z) = (1+z^2)^{\frac{1}{2}}$$

is single valued and analytic on D. Then find

$$\int_{-1-i}^{2+3i} \frac{z \, dz}{g(z)}$$

in the form a + bi, where the integral is taken along any contour from -1 - i to 2 + 3i in D.

5. (a) Show that f(x+iy) = u + iv given by

$$u = e^{x}(x\cos y - y\sin y)$$
$$v = e^{x}(y\cos y + x\sin y)$$

is an entire function.

- (b) Write f(z) explicitly as a function of the single variable z = x + iy.
- 6. Let **c** denote the contour consisting of the square whose vertices are 0, i, i + 1, 1 traversed in the clockwise direction union the circle |z| = 5 taken in the counterclockwise direction. Find

$$\int_{\mathbf{c}} \frac{\operatorname{Log}(z+6) \, dz}{(z-4i)^2}$$

7. Find the improper integral using contour integration. Find a contour and formulate an expression for I involving a limit of an integral over the contour. Account for all pieces of your contour and explain why the "garbage terms" go to zero.

$$I = \int_{-\infty}^{\infty} \frac{dx}{x^2 + 4x + 5}$$

8. Find the improper integral using contour integration. Find a contour and formulate an expression for J involving as limit of an integral over the contour. Account for all pieces of your contour. You need not explain why the "garbage terms" go to zero.

$$J = \int_{-\infty}^{\infty} \frac{\cos 3x \, dx}{\left(x^2 + 1\right)^2}$$

Solutions.

1. Find the Laurent Series centered at z=3i that converges at 3. In what region does your series converge?

$$f(z) = \frac{2z+7}{z^2+6z+5} = \frac{2z+7}{(z+1)(z+5)} = \frac{\frac{5}{4}}{z+1} + \frac{\frac{3}{4}}{z+5}$$

Laurent series converge in annular regions about the center 3i whose radii are distances to the poles $R_1 = |-1 - 3i| = \sqrt{10}$ and $R_2 = |-5 - 3i| = \sqrt{34}$. Since $|3 - 3i| = \sqrt{18}$ we will find an expansion that converges in the annulus $R_1 < |z - 3i| < R_2$. Write the partial fractions in terms of (z - 3i).

$$f(z) = \frac{\frac{5}{4}}{(z-3i)+1+3i} + \frac{\frac{3}{4}}{5+3i-(z-3i)} = \frac{5}{4(z-3i)} \cdot \frac{1}{1+\frac{1+3i}{z-3i}} + \frac{\frac{3}{4(5+3i)}}{1+\frac{z-3i}{5+3i}}$$

Using the expansion that converges for |w| < 1

$$\frac{1}{1-w} = 1 + w + w^2 + \dots = \sum_{k=0}^{\infty} w^k$$

we obtain

$$f(z) = \frac{5}{4(z-3i)} \cdot \sum_{k=0}^{\infty} (-1)^k \left(\frac{1+3i}{z-3i}\right)^k + \frac{15-9i}{136} \sum_{k=0}^{\infty} (-1)^k \left(\frac{z-3i}{5+3i}\right)^k$$

The first sum converges if $\left|\frac{1+3i}{z-3i}\right| < 1$ or $|z-3i| > |1+3i| = \sqrt{10} = R_1$ and the second converges if $\left|\frac{z-3i}{5+3i}\right| < 1$ or $|z-3i| < |5+3i| = \sqrt{34} = R_2$. Combining, we find

$$f(z) = \sum_{k=0}^{\infty} \frac{15 - 9i}{136} \left(\frac{-5 + 3i}{34} \right)^k (z - 3i)^k - \sum_{k=1}^{\infty} \frac{1 - 3i}{4} \frac{(-1 - 3i)^k}{(z - 3i)^k}$$

which converges if $R_1 < |z - 3i| < R_2$.

2. Suppose that f(z) is analytic in a domain $D \subset \mathbb{C}$. Suppose also that the disk with center z_0 and radius R > 0 is contained in D. (If $|z - z_0| \leq R$ then $z \in D$.) Show that $f(z_0)$ is the average of f over the circle $|z - z_0| = R$.

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{it}) dt.$$

We are given that f(z) is analytic on the disk $|z - z_0| \le R$. Applying the Cauchy Integral Formula, for $|z - z_0| < R$ we have

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(s) \, ds}{s - z}$$

For the particular value $z=z_0$, we parameterize the circle with $s=z_0+Re^{i\theta}$ and $ds=iRe^{i\theta}d\theta$ to get

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(s) ds}{s - z_0} = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + Re^{i\theta}) iRe^{i\theta} d\theta}{z_0 + Re^{i\theta} - z_0} = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\theta}) d\theta.$$

3. (a) Find $\operatorname{Res}_{z=0} \frac{1}{(\sin z)^3}$

We compute the Laurent expansion about zero.

$$\frac{1}{(\sin z)^3} = \frac{1}{z^3} \cdot \frac{1}{\left(1 - \frac{z^2}{6} + \cdots\right)^3} = \frac{1}{z^3} \cdot \left(1 + \frac{z^2}{6} + \cdots\right)^3 = \frac{1}{z^3} \cdot \left(1 + \frac{z^2}{2} + \cdots\right)$$

where we have used $(1+w)^3 = 1 + 3w + \cdots$. Thus the residue is the z^{-1} coefficient $\operatorname{Res}_{z=0} f(z) = \frac{1}{2}$.

(b) Suppose f(z) is analytic near z_0 and that z_0 is a zero of order n for f. Find $\underset{z=z_0}{\text{Res}} \left[\frac{f'(z)}{f(z)} \right]$ Since f(z) is analytic and has a zero of order n at z_0 it has a Taylor Series of the form

$$f(z) = a_n(z - z_0)^n + a_{n+1}(z - z_0)^{n+1} + \cdots$$

where $a_n \neq 0$. Then, dividing top and bottom by $a_n(z-z_0)^{n-1}$, the Laurent expansion near z_0 is

$$\frac{f'(z)}{f(z)} = \frac{na_n(z-z_0)^{n-1} + (n+1)a_{n+1}(z-z_0)^n + \cdots}{a_n(z-z_0)^n + a_{n+1}(z-z_0)^{n+1} + \cdots}$$

$$= \frac{n + \frac{(n+1)a_{n+1}}{a_n}(z-z_0) + \cdots}{(z-z_0)\left(1 + \frac{a_{n+1}}{a_n}(z-z_0)^+ \cdots\right)}$$

$$= \frac{1}{z-z_0} \cdot \left(n + \frac{(n+1)a_{n+1}}{a_n}(z-z_0) + \cdots\right) \left(1 - \frac{a_{n+1}}{a_n}(z-z_0) + \cdots\right)$$

$$= \frac{1}{z-z_0} \cdot \left(n + \frac{a_{n+1}}{a_n}(z-z_0) + \cdots\right)$$

$$= \frac{n}{z-z_0} + \frac{a_{n+1}}{a_n} + \cdots$$

where we have used

$$\frac{1}{1+w} = 1 - w + w^2 - \cdots$$

Thus the residue is the $(z-z_0)^{-1}$ coefficient $\operatorname{Res}_{z=z_0}\left[\frac{f'(z)}{f(z)}\right]=n.$

4. Show that by choosing a branch of square root and by making some branch cuts in \mathbb{C} , we can find a domain $D \in \mathbb{C}$ on which $g(z) = \left(1+z^2\right)^{\frac{1}{2}}$ is single valued and analytic on D. Then find

$$\int_{-1-i}^{2+3i} \frac{z \, dz}{g(z)}$$

in the form a+bi, where the integral is taken along any contour from -1-i to 2+3i in D. Suppose that we consider the principal square root. That is, we take the branch r>0 and $-\pi<\theta<\pi$ and

$$z^{\frac{1}{2}} = e^{(\ln r + i\theta)/2}$$

Then the domain $D=\{z\in {\bf C}: \Re {\bf e}(z^2+1)>0 \text{ or } \Im {\bf m}(z^2+1)\neq 0.\}$ where g(z) misses the branch cut along the negative real axis. In terms of $z=x+iy,\,z\notin D$ if and only if

$$x^2 - y^2 + 1 \le 0$$
 and $2xy = 0$.

The second equation says either y=0 or x=0. In case y=0, the first condition says $x^2+1\leq 0$ which is never true for real x. In case x=0, the first condition says $y^2\geq 1$ which is true if and only if $|y|\geq 1$, Thus the domain D is the complement of two slits along the imaginary axis for $y\geq 1$ and for $y\leq -1$. D is simply connected and z/g(z) has an antiderivative in D, namely, g(z).

$$g'(z) = \frac{d}{dz}(z^2 + 1)^{1/2} = \frac{z}{(z^2 + 1)^{1/2}} = \frac{z}{q(z)}.$$

Thus, the integral is independent of contour in D and gives

$$\int_{-1-i}^{2+3i} \frac{z \, dz}{g(z)} = g(-1-i) - g(2+3i) = \left(1 + (-1-i)^2\right)^{\frac{1}{2}} - \left(1 + (2+3i)^2\right)^{\frac{1}{2}}$$
$$= \left(1 - 2i\right)^{\frac{1}{2}} - \left(-4 + 12i\right)^{\frac{1}{2}}$$

Now $1-2i=\sqrt{5}e^{i\alpha}$ where $\alpha={\rm Atn}\,2$ and $-4+12i=4\sqrt{10}e^{i\beta}$ where $\beta=\pi-{\rm Atn}\,3$. It follows that

$$(1-2i)^{\frac{1}{2}} = \sqrt[4]{5} \left(\cos\frac{\alpha}{2} + i\sin\frac{\alpha}{2}\right),$$
$$(-4+12i)^{\frac{1}{2}} = 2\sqrt[4]{10} \left(\cos\frac{\beta}{2} + i\sin\frac{\beta}{2}\right),$$

so
$$\int_{-1-i}^{2+3i} \frac{z \, dz}{g(z)} = \left(\sqrt[4]{5} \cos \frac{\alpha}{2} - 2\sqrt[4]{10} \cos \frac{\beta}{2}\right) + i \left(\sqrt[4]{5} \sin \frac{\alpha}{2} - 2\sqrt[4]{10} \sin \frac{\beta}{2}\right).$$

5. (a) Show that f(x+iy) = u + iv is an entire function, where

$$u = e^{x}(x\cos y - y\sin y)$$
$$v = e^{x}(y\cos y + x\sin y)$$

For both functions u and v, both first order partial derivatives exist and are continuous at all points of the entire plane. Computing derivatives we find

$$u_x = e^x([x+1]\cos y - y\sin y) = v_y$$

 $u_y = e^x(-x\sin y - \sin y - y\cos y) = -v_x$

Thus, f(z) is entire since u and v satisfy the Cauchy Riemann equations at all points.

(b) Write f(z) explicitly as a function of the single variable z = x + iy. It seems that the function $e^z = e^x(\cos y + i \sin y)$ supplies some of the ingredients. Try multiplying

$$ze^z = (x + iy)e^x(\cos y + i\sin y) = e^x(x\cos y - y\sin y) + ie^x(y\cos y + x\sin y) = u + iy.$$

Yes, that's it!

6. Let **c** denote the contour consisting of the square whose vertices are 0, i, i + 1, 1 traversed in the clockwise direction union the circle |z| = 5 taken in the counterclockwise direction. Find

$$\int_{\mathbf{c}} \frac{\operatorname{Log}(z+6) \, dz}{(z-4i)^2}$$

The contour may be written $\mathbf{c} = C_5 - S$ where C_5 is the circle |z| = 5 oriented counter-clockwise and S is the square oriented clockwise. The principal logarithm is defined away from the origin and the negative real axis. $\Re(z+6) = x+6 > 0$ for all $z \in \mathbf{c}$ because $|x| \leq |z| \leq 5$ so the function $f(z) = \operatorname{Log}(z+6)$ is analytic in and on C_5 . By the Cauchy Integral Formula for derivatives

$$\int_{C_5} \frac{\text{Log}(z+6) dz}{(z-4i)^2} = 2\pi i f'(4i) = \frac{1}{6+4i} = \frac{(2+3i)\pi}{13}.$$

On the other hand since 4i is outside the square the quotient is analytic on and inside S. By the Cauchy Goursat Theorem,

$$\int_{S} \frac{\operatorname{Log}(z+6) \, dz}{(z-4i)^2} = 0.$$

Subtracting,

$$\int_{\mathbf{c}} \frac{\log(z+6)\,dz}{(z-4i)^2} = \int_{\mathbf{C}_5} \frac{\log(z+6)\,dz}{(z-4i)^2} - \int_{\mathbf{S}} \frac{\log(z+6)\,dz}{(z-4i)^2} = \frac{(2+3i)\pi}{13}.$$

7. Find the improper integral using contour integration. Find a contour and formulate an expression for I involving a limit of an integral over the contour. Account for all pieces of your contour and explain why the "garbage terms" go to zero.

$$I = \int_{-\infty}^{\infty} \frac{dx}{x^2 + 4x + 5}$$

The integrand is continuous and decays like x^{-2} as $|x| \to \infty$. Thus the integral exists as an improper integral. It may be computed by

$$I = \lim_{R \to \infty} \int_{S_R} \frac{dz}{z^2 + 4z + 5}$$

where S_R is the line segment from -R to R. Let C_R denote the semicircle |z|=R from $\theta=0$ to $\theta=\pi$.

We now show that the garbage term, the integral over C_R vanishes as $R \to \infty$. The length of C_R is $L_R = \pi R$. For $z \in C_R$ with R > 6, we have

$$\left| \frac{1}{z^2 + 4z + 5} \right| \le \frac{1}{|z^2 - (-4z - 5)|} \le \frac{1}{|z|^2 - 4|z| - 5} \le \frac{1}{R^2 - 4R - 5} = M_R$$

Thus by the contour integral estimate,

$$\left| \int_{C_R} \frac{dz}{z^2 + 4z + 5} \right| \le L_R M_R = \frac{\pi R}{R^2 - 4R - 5}$$

which tends to zero as $R \to \infty$.

The poles are at the zeros of $z^2 + 4z + 5 = (z+2)^2 + 1$ which are $-2 \pm i$ of which only $z_0 = -2 + i$ is inside $C_R + S_R$ if $R > \sqrt{5}$. The residue

$$\operatorname{Res}_{z=-2+i} \frac{1}{(z+2-i)(z+2+i)} = \frac{1}{(-2+i)+2+i} = -\frac{i}{2}.$$

From the Residue theorem we have

$$\int_{C_R+S_R} \frac{dz}{z^2+4z+5} = 2\pi i \mathop{\rm Res}_{z=-2+i} \frac{1}{z^2+4z+5} = 2\pi i \left(-\frac{i}{2}\right) = \pi.$$

Taking the limit as $R \to \infty$,

$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 4x + 5} = \pi.$$

8. Find the improper integral using contour integration. Find a contour and formulate an expression for J involving as limit of an integral over the contour. Account for all pieces of your contour. You need not explain why the "garbage terms" go to zero.

$$J = \int_{-\infty}^{\infty} \frac{\cos 3x \, dx}{\left(x^2 + 1\right)^2}$$

We observe that for real x, $\cos 3x = \Re e(e^{3ix})$. The complex exponential

$$|e^{3iz}| = |e^{3ix-3y}| = e^{-3y} \le 1$$

if $y \ge 0$. Hence integrand is continuous and decays like x^{-4} as $|x| \to \infty$. Thus the integral exists as an improper integral. It may be computed by

$$J = \Re \left(\lim_{R \to \infty} \int_{S_R} \frac{e^{3iz} dz}{(z^2 + 1)^2} \right)$$

where S_R is the line segment from -R to R. Let C_R denote the semicircle as in Problem (7). We now show that the garbage term, the integral over C_R vanishes as $R \to \infty$. The length of C_R is $L_R = \pi R$. For $z \in C_R$ with R > 6, we have

$$\left| \frac{e^{3iz} dz}{(z^2 + 1)^2} \right| \le \frac{|e^{3iz}|}{|z^2 + 1|^2} \le \frac{1}{(|z|^2 - 1)^2} \le \frac{1}{(R^2 - 1)^2} = M_R$$

Thus by the contour integral estimate,

$$\left| \int_{C_R} \frac{e^{3iz} \, dz}{\left(z^2 + 1\right)^2} \right| \le L_R M_R = \frac{\pi R}{(R^2 - 1)^2}$$

which tends to zero as $R \to \infty$.

The poles are at the zeros of $(z^2 + 1)^2$ which are $\pm i$ of which only $z_0 = i$ is inside $C_R + S_R$ if R > 1. Factoring out the pole,

$$\frac{e^{3iz} dz}{(z^2+1)^2} = \frac{1}{(z-i)^2} \cdot \frac{e^{3iz}}{(z+i)^2} = \frac{\phi(z)}{(z-i)^2}$$

where $\phi(z)$ is analytic and nonzero at z=i. The residue is the coefficient of the $(z-i)^{-1}$ term which corresponds to the (z-i) coefficient of $\phi(z)$. Using Taylor's formula,

$$\operatorname{Res}_{z=i} \frac{e^{3iz} dz}{(z^2+1)^2} = \phi'(i) = \frac{(3iz-5)e^{3iz}}{(z+i)^3} \bigg|_{z=i} = -\frac{i}{e^3}$$

From the Residue theorem we have

$$\int_{C_R + S_R} \frac{e^{3iz} dz}{\left(z^2 + 1\right)^2} = 2\pi i \operatorname{Res}_{z=i} \frac{e^{3iz} dz}{\left(z^2 + 1\right)^2} = 2\pi i \left(-\frac{i}{e^3}\right) = \frac{2\pi}{e^3}.$$

Taking the limit as $R \to \infty$,

$$J = \int_{-\infty}^{\infty} \frac{\cos 3x \, dx}{(x^2 + 1)^2} = \Re \left(\lim_{R \to \infty} \int_{S_R} \frac{e^{3iz} \, dz}{(z^2 + 1)^2} \right) = \frac{2\pi}{e^3}.$$