Math 3160 § 1.
Final Exam
Treibergs

Name:
April 28, 2006

1. Find the Laurent Series centered at $z=3 i$ that converges at 3 . In what region does your series converge?

$$
f(z)=\frac{2 z+7}{z^{2}+6 z+5} .
$$

2. Suppose that $f(z)$ is analytic in a domain $D \subset \mathbf{C}$. Suppose also that the disk with center z_{0} and radius $R>0$ is contained in D. (If $\left|z-z_{0}\right| \leq R$ then $z \in D$.) Show that $f\left(z_{0}\right)$ is the average of f over the circle $\left|z-z_{0}\right|=R$.

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+R e^{i t}\right) d t .
$$

3. (a) Find

$$
\operatorname{Res}_{z=0} \frac{1}{(\sin z)^{3}}
$$

(b) Suppose $f(z)$ is analytic near z_{0} and that z_{0} is a zero of order n for f. Find

$$
\operatorname{Res}_{z=z_{0}}\left[\frac{f^{\prime}(z)}{f(z)}\right]
$$

4. Show that by choosing a branch of square root and by making some branch cuts in \mathbf{C}, we can find a domain $D \in \mathbf{C}$ on which

$$
g(z)=\left(1+z^{2}\right)^{\frac{1}{2}}
$$

is single valued and analytic on D. Then find

$$
\int_{-1-i}^{2+3 i} \frac{z d z}{g(z)}
$$

in the form $a+b i$, where the integral is taken along any contour from $-1-i$ to $2+3 i$ in D.
5. (a) Show that $f(x+i y)=u+i v$ given by

$$
\begin{aligned}
u & =e^{x}(x \cos y-y \sin y) \\
v & =e^{x}(y \cos y+x \sin y)
\end{aligned}
$$

is an entire function.
(b) Write $f(z)$ explicitly as a function of the single variable $z=x+i y$.
6. Let \mathbf{c} denote the contour consisting of the square whose vertices are $0, i, i+1,1$ traversed in the clockwise direction union the circle $|z|=5$ taken in the counterclockwise direction. Find

$$
\int_{\mathbf{c}} \frac{\log (z+6) d z}{(z-4 i)^{2}}
$$

7. Find the improper integral using contour integration. Find a contour and formulate an expression for I involving a limit of an integral over the contour. Account for all pieces of your contour and explain why the "garbage terms" go to zero.

$$
I=\int_{-\infty}^{\infty} \frac{d x}{x^{2}+4 x+5}
$$

8. Find the improper integral using contour integration. Find a contour and formulate an expression for J involving as limit of an integral over the contour. Account for all pieces of your contour. You need not explain why the "garbage terms" go to zero.

$$
J=\int_{-\infty}^{\infty} \frac{\cos 3 x d x}{\left(x^{2}+1\right)^{2}}
$$

Solutions.

1. Find the Laurent Series centered at $z=3 i$ that converges at 3. In what region does your series converge?

$$
f(z)=\frac{2 z+7}{z^{2}+6 z+5}=\frac{2 z+7}{(z+1)(z+5)}=\frac{\frac{5}{4}}{z+1}+\frac{\frac{3}{4}}{z+5}
$$

Laurent series converge in annular regions about the center $3 i$ whose radii are distances to the poles $R_{1}=|-1-3 i|=\sqrt{10}$ and $R_{2}=|-5-3 i|=\sqrt{34}$. Since $|3-3 i|=\sqrt{18}$ we will find an expansion that converges in the annulus $R_{1}<|z-3 i|<R_{2}$. Write the partial fractions in terms of $(z-3 i)$.

$$
f(z)=\frac{\frac{5}{4}}{(z-3 i)+1+3 i}+\frac{\frac{3}{4}}{5+3 i-(z-3 i)}=\frac{5}{4(z-3 i)} \cdot \frac{1}{1+\frac{1+3 i}{z-3 i}}+\frac{\frac{3}{4(5+3 i)}}{1+\frac{z-3 i}{5+3 i}}
$$

Using the expansion that converges for $|w|<1$

$$
\frac{1}{1-w}=1+w+w^{2}+\cdots=\sum_{k=0}^{\infty} w^{k}
$$

we obtain

$$
f(z)=\frac{5}{4(z-3 i)} \cdot \sum_{k=0}^{\infty}(-1)^{k}\left(\frac{1+3 i}{z-3 i}\right)^{k}+\frac{15-9 i}{136} \sum_{k=0}^{\infty}(-1)^{k}\left(\frac{z-3 i}{5+3 i}\right)^{k}
$$

The first sum converges if $\left|\frac{1+3 i}{z-3 i}\right|<1$ or $|z-3 i|>|1+3 i|=\sqrt{10}=R_{1}$ and the second converges if $\left|\frac{z-3 i}{5+3 i}\right|<1$ or $|z-3 i|<|5+3 i|=\sqrt{34}=R_{2}$. Combining, we find

$$
f(z)=\sum_{k=0}^{\infty} \frac{15-9 i}{136}\left(\frac{-5+3 i}{34}\right)^{k}(z-3 i)^{k}-\sum_{k=1}^{\infty} \frac{1-3 i}{4} \frac{(-1-3 i)^{k}}{(z-3 i)^{k}}
$$

which converges if $R_{1}<|z-3 i|<R_{2}$.
2. Suppose that $f(z)$ is analytic in a domain $D \subset \mathbf{C}$. Suppose also that the disk with center z_{0} and radius $R>0$ is contained in D. (If $\left|z-z_{0}\right| \leq R$ then $z \in D$.) Show that $f\left(z_{0}\right)$ is the average of f over the circle $\left|z-z_{0}\right|=R$.

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+R e^{i t}\right) d t
$$

We are given that $f(z)$ is analytic on the disk $\left|z-z_{0}\right| \leq R$. Applying the Cauchy Integral Formula, for $\left|z-z_{0}\right|<R$ we have

$$
f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s) d s}{s-z}
$$

For the particular value $z=z_{0}$, we parameterize the circle with $s=z_{0}+R e^{i \theta}$ and $d s=$ $i R e^{i \theta} d \theta$ to get

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(s) d s}{s-z_{0}}=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(z_{0}+R e^{i \theta}\right) i R e^{i \theta} d \theta}{z_{0}+R e^{i \theta}-z_{0}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+R e^{i \theta}\right) d \theta
$$

3. (a) Find $\operatorname{Res}_{z=0} \frac{1}{(\sin z)^{3}}$

We compute the Laurent expansion about zero.

$$
\frac{1}{(\sin z)^{3}}=\frac{1}{z^{3}} \cdot \frac{1}{\left(1-\frac{z^{2}}{6}+\cdots\right)^{3}}=\frac{1}{z^{3}} \cdot\left(1+\frac{z^{2}}{6}+\cdots\right)^{3}=\frac{1}{z^{3}} \cdot\left(1+\frac{z^{2}}{2}+\cdots\right)
$$

where we have used $(1+w)^{3}=1+3 w+\cdots$. Thus the residue is the z^{-1} coefficient $\operatorname{Res}_{z=0} f(z)=\frac{1}{2}$.
(b) Suppose $f(z)$ is analytic near z_{0} and that z_{0} is a zero of ordern for f. Find $\underset{z=z_{0}}{\operatorname{Res}_{0}}\left[\frac{f^{\prime}(z)}{f(z)}\right]$ Since $f(z)$ is analytic and has a zero of order n at z_{0} it has a Taylor Series of the form

$$
f(z)=a_{n}\left(z-z_{0}\right)^{n}+a_{n+1}\left(z-z_{0}\right)^{n+1}+\cdots
$$

where $a_{n} \neq 0$. Then, dividing top and bottom by $a_{n}\left(z-z_{0}\right)^{n-1}$, the Laurent expansion near z_{0} is

$$
\begin{aligned}
\frac{f^{\prime}(z)}{f(z)} & =\frac{n a_{n}\left(z-z_{0}\right)^{n-1}+(n+1) a_{n+1}\left(z-z_{0}\right)^{n}+\cdots}{a_{n}\left(z-z_{0}\right)^{n}+a_{n+1}\left(z-z_{0}\right)^{n+1}+\cdots} \\
& =\frac{n+\frac{(n+1) a_{n+1}}{a_{n}}\left(z-z_{0}\right)+\cdots}{\left(z-z_{0}\right)\left(1+\frac{a_{n+1}}{a_{n}}\left(z-z_{0}\right)+\cdots\right)} \\
& =\frac{1}{z-z_{0}} \cdot\left(n+\frac{(n+1) a_{n+1}}{a_{n}}\left(z-z_{0}\right)+\cdots\right)\left(1-\frac{a_{n+1}}{a_{n}}\left(z-z_{0}\right)+\cdots\right) \\
& =\frac{1}{z-z_{0}} \cdot\left(n+\frac{a_{n+1}}{a_{n}}\left(z-z_{0}\right)+\cdots\right) \\
& =\frac{n}{z-z_{0}}+\frac{a_{n+1}}{a_{n}}+\cdots
\end{aligned}
$$

where we have used

$$
\frac{1}{1+w}=1-w+w^{2}-\cdots
$$

Thus the residue is the $\left(z-z_{0}\right)^{-1}$ coefficient $\operatorname{Res}_{z=z_{0}}\left[\frac{f^{\prime}(z)}{f(z)}\right]=n$.
4. Show that by choosing a branch of square root and by making some branch cuts in \mathbf{C}, we can find a domain $D \in \mathbf{C}$ on which $g(z)=\left(1+z^{2}\right)^{\frac{1}{2}}$ is single valued and analytic on D. Then find

$$
\int_{-1-i}^{2+3 i} \frac{z d z}{g(z)}
$$

in the form $a+b i$, where the integral is taken along any contour from $-1-i$ to $2+3 i$ in D. Suppose that we consider the principal square root. That is, we take the branch $r>0$ and $-\pi<\theta<\pi$ and

$$
z^{\frac{1}{2}}=e^{(\ln r+i \theta) / 2}
$$

Then the domain $D=\left\{z \in \mathbf{C}: \Re \mathrm{e}\left(z^{2}+1\right)>0\right.$ or $\left.\Im \mathrm{m}\left(z^{2}+1\right) \neq 0.\right\}$ where $g(z)$ misses the branch cut along the negative real axis. In terms of $z=x+i y, z \notin D$ if and only if

$$
x^{2}-y^{2}+1 \leq 0 \quad \text { and } \quad 2 x y=0
$$

The second equation says either $y=0$ or $x=0$. In case $y=0$, the first condition says $x^{2}+1 \leq 0$ which is never true for real x. In case $x=0$, the first condition says $y^{2} \geq 1$ which is true if and only if $|y| \geq 1$, Thus the domain D is the complement of two slits along the imaginary axis for $y \geq 1$ and for $y \leq-1$. D is simply connected and $z / g(z)$ has an antiderivative in D, namely, $g(z)$.

$$
g^{\prime}(z)=\frac{d}{d z}\left(z^{2}+1\right)^{1 / 2}=\frac{z}{\left(z^{2}+1\right)^{1 / 2}}=\frac{z}{g(z)}
$$

Thus, the integral is independent of contour in D and gives

$$
\begin{aligned}
\int_{-1-i}^{2+3 i} \frac{z d z}{g(z)}=g(-1-i)-g(2+3 i) & =\left(1+(-1-i)^{2}\right)^{\frac{1}{2}}-\left(1+(2+3 i)^{2}\right)^{\frac{1}{2}} \\
& =(1-2 i)^{\frac{1}{2}}-(-4+12 i)^{\frac{1}{2}}
\end{aligned}
$$

Now $1-2 i=\sqrt{5} e^{i \alpha}$ where $\alpha=\operatorname{Atn} 2$ and $-4+12 i=4 \sqrt{10} e^{i \beta}$ where $\beta=\pi-\operatorname{Atn} 3$. It follows that

$$
\begin{aligned}
(1-2 i)^{\frac{1}{2}} & =\sqrt[4]{5}\left(\cos \frac{\alpha}{2}+i \sin \frac{\alpha}{2}\right) \\
(-4+12 i)^{\frac{1}{2}} & =2 \sqrt[4]{10}\left(\cos \frac{\beta}{2}+i \sin \frac{\beta}{2}\right)
\end{aligned}
$$

So

$$
\int_{-1-i}^{2+3 i} \frac{z d z}{g(z)}=\left(\sqrt[4]{5} \cos \frac{\alpha}{2}-2 \sqrt[4]{10} \cos \frac{\beta}{2}\right)+i\left(\sqrt[4]{5} \sin \frac{\alpha}{2}-2 \sqrt[4]{10} \sin \frac{\beta}{2}\right)
$$

5. (a) Show that $f(x+i y)=u+i v$ is an entire function, where

$$
\begin{aligned}
& u=e^{x}(x \cos y-y \sin y) \\
& v=e^{x}(y \cos y+x \sin y)
\end{aligned}
$$

For both functions u and v, both first order partial derivatives exist and are continuous at all points of the entire plane. Computing derivatives we find

$$
\begin{aligned}
& u_{x}=e^{x}([x+1] \cos y-y \sin y)=v_{y} \\
& u_{y}=e^{x}(-x \sin y-\sin y-y \cos y)=-v_{x}
\end{aligned}
$$

Thus, $f(z)$ is entire since u and v satisfy the Cauchy Riemann equations at all points.
(b) Write $f(z)$ explicitly as a function of the single variable $z=x+i y$.

It seems that the function $e^{z}=e^{x}(\cos y+i \sin y)$ supplies some of the ingredients. Try multiplying

$$
z e^{z}=(x+i y) e^{x}(\cos y+i \sin y)=e^{x}(x \cos y-y \sin y)+i e^{x}(y \cos y+x \sin y)=u+i y .
$$

Yes, that's it!
6. Let \mathbf{c} denote the contour consisting of the square whose vertices are $0, i, i+1,1$ traversed in the clockwise direction union the circle $|z|=5$ taken in the counterclockwise direction. Find

$$
\int_{\mathbf{c}} \frac{\log (z+6) d z}{(z-4 i)^{2}}
$$

The contour may be written $\mathbf{c}=C_{5}-S$ where C_{5} is the circle $|z|=5$ oriented counterclockwise and S is the square oriented clockwise. The principal logarithm is defined away from the origin and the negative real axis. $\Re \mathrm{e}(z+6)=x+6>0$ for all $z \in \mathbf{c}$ because $|x| \leq|z| \leq 5$ so the function $f(z)=\log (z+6)$ is analytic in and on C_{5}. By the Cauchy Integral Formula for derivatives

$$
\int_{C_{5}} \frac{\log (z+6) d z}{(z-4 i)^{2}}=2 \pi i f^{\prime}(4 i)=\frac{1}{6+4 i}=\frac{(2+3 i) \pi}{13} .
$$

On the other hand since $4 i$ is outside the square the quotient is analytic on and inside S. By the Cauchy Goursat Theorem,

$$
\int_{S} \frac{\log (z+6) d z}{(z-4 i)^{2}}=0
$$

Subtracting,

$$
\int_{\mathbf{c}} \frac{\log (z+6) d z}{(z-4 i)^{2}}=\int_{\mathbf{C}_{5}} \frac{\log (z+6) d z}{(z-4 i)^{2}}-\int_{\mathbf{S}} \frac{\log (z+6) d z}{(z-4 i)^{2}}=\frac{(2+3 i) \pi}{13} .
$$

7. Find the improper integral using contour integration. Find a contour and formulate an expression for I involving a limit of an integral over the contour. Account for all pieces of your contour and explain why the "garbage terms" go to zero.

$$
I=\int_{-\infty}^{\infty} \frac{d x}{x^{2}+4 x+5}
$$

The integrand is continuous and decays like x^{-2} as $|x| \rightarrow \infty$. Thus the integral exists as an improper integral. It may be computed by

$$
I=\lim _{R \rightarrow \infty} \int_{S_{R}} \frac{d z}{z^{2}+4 z+5}
$$

where S_{R} is the line segment from $-R$ to R. Let C_{R} denote the semicircle $|z|=R$ from $\theta=0$ to $\theta=\pi$.

We now show that the garbage term, the integral over C_{R} vanishes as $R \rightarrow \infty$. The length of C_{R} is $L_{R}=\pi R$. For $z \in C_{R}$ with $R>6$, we have

$$
\left|\frac{1}{z^{2}+4 z+5}\right| \leq \frac{1}{\left|z^{2}-(-4 z-5)\right|} \leq \frac{1}{|z|^{2}-4|z|-5} \leq \frac{1}{R^{2}-4 R-5}=M_{R}
$$

Thus by the contour integral estimate,

$$
\left|\int_{C_{R}} \frac{d z}{z^{2}+4 z+5}\right| \leq L_{R} M_{R}=\frac{\pi R}{R^{2}-4 R-5}
$$

which tends to zero as $R \rightarrow \infty$.
The poles are at the zeros of $z^{2}+4 z+5=(z+2)^{2}+1$ which are $-2 \pm i$ of which only $z_{0}=-2+i$ is inside $C_{R}+S_{R}$ if $R>\sqrt{5}$. The residue

$$
\operatorname{Res}_{z=-2+i} \frac{1}{(z+2-i)(z+2+i)}=\frac{1}{(-2+i)+2+i}=-\frac{i}{2}
$$

From the Residue theorem we have

$$
\int_{C_{R}+S_{R}} \frac{d z}{z^{2}+4 z+5}=2 \pi i \operatorname{ReS}_{z=-2+i} \frac{1}{z^{2}+4 z+5}=2 \pi i\left(-\frac{i}{2}\right)=\pi
$$

Taking the limit as $R \rightarrow \infty$,

$$
\int_{-\infty}^{\infty} \frac{d x}{x^{2}+4 x+5}=\pi
$$

8. Find the improper integral using contour integration. Find a contour and formulate an expression for J involving as limit of an integral over the contour. Account for all pieces of your contour. You need not explain why the "garbage terms" go to zero.

$$
J=\int_{-\infty}^{\infty} \frac{\cos 3 x d x}{\left(x^{2}+1\right)^{2}}
$$

We observe that for real $x, \cos 3 x=\Re \mathrm{e}\left(e^{3 i x}\right)$. The complex exponential

$$
\left|e^{3 i z}\right|=\left|e^{3 i x-3 y}\right|=e^{-3 y} \leq 1
$$

if $y \geq 0$. Hence integrand is continuous and decays like x^{-4} as $|x| \rightarrow \infty$. Thus the integral exists as an improper integral. It may be computed by

$$
J=\Re \mathrm{e}\left(\lim _{R \rightarrow \infty} \int_{S_{R}} \frac{e^{3 i z} d z}{\left(z^{2}+1\right)^{2}}\right)
$$

where S_{R} is the line segment from $-R$ to R. Let C_{R} denote the semicircle as in Problem (7). We now show that the garbage term, the integral over C_{R} vanishes as $R \rightarrow \infty$. The length of C_{R} is $L_{R}=\pi R$. For $z \in C_{R}$ with $R>6$, we have

$$
\left|\frac{e^{3 i z} d z}{\left(z^{2}+1\right)^{2}}\right| \leq \frac{\left|e^{3 i z}\right|}{\left|z^{2}+1\right|^{2}} \leq \frac{1}{\left(|z|^{2}-1\right)^{2}} \leq \frac{1}{\left(R^{2}-1\right)^{2}}=M_{R}
$$

Thus by the contour integral estimate,

$$
\left|\int_{C_{R}} \frac{e^{3 i z} d z}{\left(z^{2}+1\right)^{2}}\right| \leq L_{R} M_{R}=\frac{\pi R}{\left(R^{2}-1\right)^{2}}
$$

which tends to zero as $R \rightarrow \infty$.
The poles are at the zeros of $\left(z^{2}+1\right)^{2}$ which are $\pm i$ of which only $z_{0}=i$ is inside $C_{R}+S_{R}$ if $R>1$. Factoring out the pole,

$$
\frac{e^{3 i z} d z}{\left(z^{2}+1\right)^{2}}=\frac{1}{(z-i)^{2}} \cdot \frac{e^{3 i z}}{(z+i)^{2}}=\frac{\phi(z)}{(z-i)^{2}}
$$

where $\phi(z)$ is analytic and nonzero at $z=i$. The residue is the coefficient of the $(z-i)^{-1}$ term which corresponds to the $(z-i)$ coefficient of $\phi(z)$. Using Taylor's formula,

$$
\operatorname{Res}_{z=i} \frac{e^{3 i z} d z}{\left(z^{2}+1\right)^{2}}=\phi^{\prime}(i)=\left.\frac{(3 i z-5) e^{3 i z}}{(z+i)^{3}}\right|_{z=i}=-\frac{i}{e^{3}}
$$

From the Residue theorem we have

$$
\int_{C_{R}+S_{R}} \frac{e^{3 i z} d z}{\left(z^{2}+1\right)^{2}}=2 \pi i \operatorname{Res}_{z=i} \frac{e^{3 i z} d z}{\left(z^{2}+1\right)^{2}}=2 \pi i\left(-\frac{i}{e^{3}}\right)=\frac{2 \pi}{e^{3}}
$$

Taking the limit as $R \rightarrow \infty$,

$$
J=\int_{-\infty}^{\infty} \frac{\cos 3 x d x}{\left(x^{2}+1\right)^{2}}=\Re \mathrm{e}\left(\lim _{R \rightarrow \infty} \int_{S_{R}} \frac{e^{3 i z} d z}{\left(z^{2}+1\right)^{2}}\right)=\frac{2 \pi}{e^{3}}
$$

