
Math 2210 § 4.
Treibergs

Second Midterm Exam Name: Solutions
March 20, 2019

1. Let f(x, y) = x4y. Find all first and second partial derivatives of f(x, y). Find the unit
vector u in the direction in which f increases the fastest at the point (1, 2). What is the
directional derivative Duf(1, 2)? Find the second order Taylor polynomial P2(x, y) at the
point (1, 2).

The first and second partial derivatives are

fx = 4x3y, fy = x4, fxx = 12x2y, fxy = 4x3, fyy = 0.

f(1, 2) = 2. At (1, 2) the derivatives equal

fx(1, 2) = 8, fy(1, 2) = 1, fxx(1, 2) = 24, fxy(1, 2) = 4, fyy(1, 2) = 0.

The vector in the direction of the fastest increase is the gradient.

∇f = (fx, fy) = (4x3y, x4), v = ∇f(1, 2) = (8, 1).

The unit vector in the direction of fastest increase is

u =
v

‖v‖
=

(8, 1)√
82 + 12

=
1√
65

(8, 1).

The directional derivative in that direction at (1, 2) is

Duf(1, 2) = u · ∇f(1, 2) =
v

‖v‖
· v =

‖v‖2

‖v‖
= ‖v‖ =

√
65.

The second order Taylor Polynomial at (x0, y0) = (1, 2) is

P1(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)+

+
1

2

{
fxx(x0, y0)(x− x0)2 + 2fxy(x0, y0)(x− x0)(y − y0) + fyy(x0, y0)(y − y0)2

}
= f(1, 2) + fx(1, 2)(x− 1) + fy(1, 2)(y − 2)+

+
1

2

{
fxx(1, 2)(x− 1)2 + 2fxy(1, 2)(x− 1)(y − 2) + fyy(1, 2)(y − 2)2

}
= 2 + 8(x− 1) + (y − 2) +

1

2

{
24(x− 1)2 + 8(x− 1)(y − 2)

}
.

2. (a) Determine whether the limit exists. If it does, find the limit. If it doesn’t exist, explain
why not.

lim
(x,y)→(0,0)

xy3

x4 + y4

The limit does not exist. If one takes the path to the origin (x, y) = (t, 0) then

lim
t→0

0

t4 + 04
= 0.

If one takes the path to the origin (x, y) = (t, t) then

lim
t→0

t4

t4 + t4
=

1

2
.

Since the limit along the two paths disagree, there is no limit at the origin.
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(b) A surface satisfies the equation f(x, y, z) =
x2

9
+
y2

4
− z2 = 1. Identify this surface.

Find the equation of the tangent plane of this surface at P = (3, 2, 1).

Since for every horizontal plane z = const. the slice is a nontrivial ellipsoid, the surface
is a Hyperboloid of One Sheet.

The normal to the surface is given by the gradient

∇f = (fx, fy, fz) =

(
2

9
x,

1

2
y,−2z

)
, N = ∇f(3, 2, 1) =

(
2

3
, 1,−2

)
.

Using the point-normal form of the equation of the tangent plane, where X = (x, y, z)
is an arbitrary point on the plane is

0 = N · (X−P) =

(
2

3
, 1,−2

)
· (x− 3, y − 2, z − 1) =

2

3
(x− 3) + (y − 2)− 2(z − 1).

3. (a) Is the function f(x, y) = min(|x|, |y|) differentiable at (0, 0)? Give a SHORT reason
for your answer.

The function is not differentiable at (0, 0). The short reason is that the func-
tion is not almost linear at (0, 0), i.e., the tangent plane z = f(0, 0) + fx(0, 0)(x− 0) +
fy(0, 0)(y − 0) = 0 does not well approximate the graph at the origin.

Here is a long reason (not needed for your answer.) Since f(x, 0) = f(0, x) = 0 the
partial derivatives exist at the origin and fx(0, 0) = 0 and fy(0, 0) = 0. Hence the
tangent plane is dead zero

z = λ(x, y) = f(0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y − 0) = 0.

Now f(x, y) is differentiable at (0, 0) if the following limit exists and equals zero:

lim
(x,y)→(0,0)

f(x, y)− λ(x, y)

‖(x− 0, y − 0)‖
= lim

(x,y)→(0,0)

min(|x|, |y|)− 0√
x2 + y2

If one takes the path to the origin (x, y) = (t, 0) then

lim
t→0

0

|t|
= 0.

If one takes the path to the origin (x, y) = (t, t) then

lim
t→0

|t|√
2|t|

=
1√
2
.

Since the limit along the two paths disagree, there is no limit at the origin so f is not
differentiable there.
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(b) Find
∂f

∂v
. Express your answer in terms of (u, v) where

f(x, y) = sin(x+ y)ez, x = u+ v2, y = u3, z = uv.

Using the chain rule, we find

∂f

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
+
∂f

∂z

∂z

∂v

= cos(x+ y)ez · 2v + cos(x+ y)ez · 0 + sin(x+ y)ez · u
= 2 cos(u+ v2 + u3)euvv + sin(u+ v2 + u3)euvu

4. (a) Consider the function f(x, y) = x3 + y2 − 12x + 3y Find the two critical points of
f(x, y). Find the discrimimant D = fxxfyy − f2xy. Use the discrimimant to determine
whether each of the critical points in part (a) is a local minimum, local maximum,
saddle or indeterminate.

Critical points satisfy ∇f = (0, 0) or

0 = fx = 3x2 − 12,

0 = fy = 2y + 3

whose solution is x = ±2 and y = − 3
2 hence the critical points are (2,− 3

2 ) and
(−2,− 3

2 ). We have

fxx = 6x, fxy = 0, fyy = 2, D = fxxfyy − f2xy = 12x.

At the first critical point (2,− 3
2 ), D = 24 > 0 and fxx = 12 > 0 so it is a local

minimum. At the second critical point (−2,− 3
2 ), D = −24 < 0 so it is a saddle.

(b) Express the Cartesian coordinates P = (x, y, z) of three space in terms of spherical
coordinates (ρ, φ, θ). Label ρ, φ, θ and r on the diagram. Change the spherical coordi-
nates equation ρ sinφ = 1 to Cartesian coordinates.

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ

r = ρ sinφ

The equation is r = ρ sinφ = 1, in other words, it is the cylinder surface whose equation
is √

x2 + y2 = 1 or x2 + y2 = 1.
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5. Find the maximum and minimum of the function f(x, y) = xy on the circle x2 + y2 = 4.

We use the method of Lagrange Multipliers. The objective function is f(x, y) = xy and the
constraint is

g(x, y) = x2 + y2 = 4.

The critical points subject to the constraint satisfy ∇f(x, y) = λ∇g(x, y) and the constraint
equation. Componentwise these are

fx = y = 2λx = λgx (1)

fy = x = 2λy = λgy (2)

g = x2 + y2 = 4. (3)

Substituting the second equation into the first yields

y = 4λ2y or (1− 4λ2)y = 0.

Either y = 0, so the second equation implies x = 0 and x2 +y2 = 0 doesn’t satisfy the third
equation, so this is impossible. Or (1 − 4λ2) = 0 which implies that λ = 1

2 or λ = − 1
2 . In

case λ = 1
2 , the first equation says x = y so that the third equation gives

x2 + y2 = 2x2 = 4

so that x = y =
√

2 or x = y = −
√

2. For these critical points,

f
(√

2,
√

2
)

= f
(
−
√

2,−
√

2
)

= 2.

In case λ = − 1
2 , the first equation says x = −y so that the third equation gives

x2 + y2 = x2 + (−x)2 = 2x2 = 4

so that x = −y =
√

2 or x = −y = −
√

2. For these critical points,

f
(√

2,−
√

2
)

= f
(
−
√

2,
√

2
)

= −2.

Thus the minimum occurs at both critical points (
√

2,−
√

2) and (−
√

2,
√

2) where f = −2.
The maximum occurs at the two critical points (

√
2,
√

2) and (−
√

2,−
√

2) where f = 2.

Alternative solution. Parameterize the circle

x = 2 cos t, y = 2 sin t.

Then we seek t where

h(t) = f(2 cos t, 2 sin t) = 4 cos t sin t = 2 sin 2t

is maximum and minimum. Differentiating,

h′(t) = −4 sin2 t+ 4 cos2 t = 4 cos 2t.

This is zero when cos 2t = 0 or when

2t =
π

2
+ 2πk or 2t =

3π

2
+ 2πk

where k is an integer. In the range 0 ≤ t < 2π covering the whole circle, this occurs in the
former case when t = π

4 or t = 5π
4 for which

(x, y) =
(

2 cos
π

4
, 2 sin

π

4

)
= (
√

2,
√

2) or (x, y) =

(
2 cos

5π

4
, 2 sin

5π

4

)
= (−

√
2,−
√

2)
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and f(x, y) = 2 in both cases. In the latter case when t = 3π
4 or t = 7π

4 we have

(x, y) =

(
2 cos

3π

4
, 2 sin

3π

4

)
= (−

√
2,
√

2) or (x, y) =

(
2 cos

7π

4
, 2 sin

7π

4

)
= (
√

2,−
√

2)

and f(x, y) = −2 in both cases. Thus the minimum occurs at both critical points (
√

2,−
√

2)
and (−

√
2,
√

2) where f = −2. The maximum occurs at the two critical points (
√

2,
√

2)
and (−

√
2,−
√

2) where f = 2.
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