
Math 2210 § 4.
Treibergs

Second Midterm Exam Name: Practice Problems
March 6, 2019

1. Graph the surface and identify it.
x2

9
− y2

4
= z

Figure 1: Problem 1.

The y = const. slices are upward parabolas. The x = const. slices are downward parabolas.
The surface is a saddle. Here is the output from my Grapher program on my laptop
Macintosh. It is a hyperbolic paraboloid.

2. For the function in problem 1, find the equation of the tangent plane at P = (2, 1).

The partial derivatives of z = f(x, y) at (2, 1) where f(2, 1) =
4

9
− 1

4
=

7

36
are

fx(x, y) =
2

9
x, f(2, 1) =

4

9
; fy(x, y) = −1

2
y; fy(2, 1) = −1

2
.

The equation of the tangent plane at P = (x0, y0) is

z = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(x− x0).

In our case, (x0, y0) = (2, 1) so

z = f(2, 1) + fx(2, 1)(x− 2) + fy(2, 1)(x− 1)

=
7

36
+

4

9
(x− 2)− 1

2
(y − 1)

=

(
7

36
− 8

9
+

1

2

)
+

4

9
x− 1

2
y

= − 7

36
+

4

9
x− 1

2
y.
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3. Find the first, second and third order Taylor polynomials at (2, 1) for the function in Prob-
lem 1.

The first order Taylor polynomial is the same as the equation for the tangent plane

P1(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(x− x0) =
7

36
+

4

9
(x− 2)− 1

2
(y − 1).

Continuing computing derivatives, we find

fxx(x, y) =
2

9
, ; fxy(x, y) = 0; fyy(x, y) = −1

2
.

The second order Taylor Polynomial is P2(x, y) =

= P1(x, y) +
1

2

(
fxx(x0, y0)(x− x0)2 + 2fxy(x0, y0)(x− x0)(y − y0) + fyy(x0, y0)(y − y0)2

)
=

7

36
+

4

9
(x− 2)− 1

2
(y − 1) +

1

2

(2

9
(x− 2)2 − 1

2
(y − 1)2

)
=
x2

9
− y2

4
.

The second order Taylor polynomial of the function turns out to be the function itself. This
is no surprise because the quadratic polynomial approximation of a quadratic polynomial
should be itself! Continuing in this vein we see that the third derivatives all vanish

fxxx(x, y) = fxxy(x, y) = fxyy(x, y) = fyyy(x, y) = 0.

The third order Taylor Polynomial is

P3(x, y) = P2(x, y) +
1

6

(
fxxx(x0, y0)(x− x0)3 + 3fxxy(x0, y0)(x− x0)2(y − y0)

+3fxyy(x0, y0)(x− x0)(y − y0)2 + fyyy(x0, y0)(y − y0)3
)

= P2(x, y) + 0 =
x2

9
− y2

4
.

Thus since the second order polynomial already recovers the function on the nose, the third
derivative correction is zero.

4. Sketch the surface and indicate some level curves.

z =
5√

1 + (x− 2)2 + (y + 3)2

The level curves at z = k are given by

25

k2
− 1 = (x− 2)2 + (y + 3)2

which are circles centered at (2,−3) and radius

√
25

k2
− 1. A view from Macintosh’s Grapher

is given in Figure 2.

5. Let A(x, y) be the area of a nondegenerate rectangle of dimensions x and y, the rectangle
being inside a circle of radius 10. Determine the domain and range of this function.

To be nondegenerate we require 0 < x and 0 < y. Every rectangle that fits inside the circle
of radius r ≤ 10 may be moved so that the center of the rectangle coincides with the center
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Figure 2: Problem 5.

of the circle. Thus the diagonal of the rectangle can be at most the diameter of the circle,
namely

√
x2 + y2 ≤ 20. Thus the domain is the set shaped like a quarter sector

D = {(x, y) ∈ R2 : 0 < x, 0 < y and x2 + y2 ≤ 400.}

The range is the set of all possible values of the area A(x, y) when (x, y) ∈ D. We see that
for (x, y) ∈ D,

0 < A(x, y) = xy =
1

2
(x2 + y2)− 1

2
(x− y)2 ≤ 200− 0.

In fact, the rectangle of sides x = y = 10
√

2 (the biggest possible square) has diagonal√
x2 + y2 = 20 and area A(x, y) = 200. All intermediate areas occur for all smaller squares.

Thus the range is 0 < A ≤ 200.

6. Show that the limit lim
(x,y)→(0,0)

f(x, y) does not exist, where

f(x, y) =


x2y

x4 + y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

Along a straight line (x, y) = (at, bt) where (a, b) 6= (0, 0) we have f(at, bt) =
a2bt

a4t2 + b2
→ 0

as t → 0. However, along the parabola (x, y) = (t, t2), f(t, t2) =
1

2
→ 1

2
as t → 0. Since

the limits along two approaches to the origin differ, there is no limit at the origin.
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7. Assume that the function z = f(x, y) is differentiable and that

f(3, 4) = 2;
∂f

∂x
(3, 4) = 5;

∂f

∂y
(3, 4) = 6.

In what direction is the directional derivative increasing the fastest and what is tha direc-
tional derivative in that direction?

The direction of fastest increase is in the gradient direction

∇f(3, 4) = 〈5, 6〉

The unit vector in this direction is

u =
∇f
‖∇f‖

=
〈5, 6〉√
52 + 62

=
1√
61
〈5, 6〉.

The directional derivative in this direction is

Duf(3, 4) = u · ∇f =
∇f · ∇f
‖∇f‖

= ‖∇f(3, 4)‖ =
√

61.

8. Find the equation of the plane tangent to the level surface f(x, y, z) at the point P = (2, 3, 4),
where

f(x, y, z) = x3 + y3 + z3 − 6xyz.

The value of f on the level set is c = f(2, 3, 4) = −45. The gradient of f at P gives the
normal vector.

∇f = 〈3x2 − 6yz, 3y2 − 6xz, 3y2 − 6xy〉

so that
N = ∇f(P ) = 〈−60,−21,−9〉.

Thus the point normal-form of a the equation of the tangent plane for the general point
X = 〈x, y, z〉 is

0 = N · (X − P )

or
0 = −60(x− 2)− 21(y − 3)− 9(z − 4).

9. Find all critical points, the global mininimum and the global maximum of the function
f(x, y). For each critical point, determine if the point is a local minimum, local maximum,
saddle or indeterminate.

f(x, y) = x4 − 2x2y + y6.

The critical points occur if ∇f = 〈0, 0〉. The gradient is

∇f = 〈4x3 − 4xy,−2x2 + 6y5〉.

It vanishes when
4x(x2 − y) = 0 or x2 = 3y5

The first equation tells us that either x = 0 in which case, from the second equation
y = 0. Otherwise y = x2 which is nonnegative, in which case the second equation becomes
0 = y(1−3y4). Thus y = 0 so x = 0 from y = x2 or y = 3−1/4 (positive root) so x = ±3−1/8.
Hence there are only three critical points at (0, 0), (3−1/8, 3−1/4) and (−3−1/8, 3−1/4). The
value of the function at these points is

f(0, 0) = 0; f(±3−1/8, 3−1/4) = −2 · 3−3/2 ≈ −0.3849002.
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Computing the second derivatives we find

fxx = 12x2 − 4y; fxy = −4x; fyy = 30y4.

The discrimimant is

D = fxxfyy − f2xy = 360x2y4 − 120y5 − 16x2

which is zero at (0, 0) where the situation is indeterminate. At the other critical points
where y = x2,

D = 240x10 − 16x2 = 16x2(30x8 − 1)

which is positive when x = ±3−1/8. Since fxx = 8x2 > 0 also, the two critical points other
than the origin are relative minima.

When y = 0 the f(x, 0)→∞ as x→∞ so f has no global maximum. On the other hand,
f(x, y) ≥ −1 for all (x, y). To see this, if |y| ≥ 1 then

x4 − 2x2y + y6 ≥ x4 − 2x2y + y2 = (x2 − y)2 ≥ 0.

If |y| ≤ 1 then
x4 − 2x2y + y6 ≥ x4 − 2x2

which is positive if x2 > 2 and greater than −1 everywhere. Since the function takes
negative values, it must take global minima in the region −

√
2 ≤ x ≤

√
2 and −1 ≤ y ≤ 1

where negative values are possible. Being differentiable, any global minima are critical
points, thus are the two points with equal values which we found.

A plot using the R c© package is given in Figure 3.

Figure 3: Problem 9.
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10. Find the limit L = lim
(x,y)→(3,4)

f(x, y) where

f(x, y) =


(x− 3)2(y − 4)2

(x− 3)2 + (y − 4)2
, if (x, y) 6= (3, 4);

0, if (x, y) = (3, 4).

The limit is zero. To see it observe that

0 ≤ (x− 3)2(y − 4)2

≤ 1

2

[
2(x− 3)2(y − 4)2

]
≤ 1

2

[
(x− 3)4 + 2(x− 3)2(y − 4)2 + (y − 4)4

]
=

1

2

[
(x− 3)2 + (y − 4)2

]2
so that

0 ≤ f(x, y) ≤
[
(x− 3)2 + (y − 4)2

]2
2 [(x− 3)2 + (y − 4)2]

=
1

2

[
(x− 3)2 + (y − 4)2

]
.

Since the function is squeezed between two functions that have a limit we conclude

0 = lim
(x,y)→(3,4)

0 ≤ lim
(x,y)→(3,4)

f(x, y) ≤ lim
(x,y)→(3,4)

1

2

[
(x− 3)2 + (y − 4)2

]
= 0.

The last limit holds because it is the limit of a polynomial which is continuous at all points.

11. Determine whether the function is continuous at (0, 0).

f(x, y) =


xy3

x4 + y4
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).

The function is not continuous at (0, 0). To see it, consider two paths tending to the origin.
For (x, y) = (t, 0), f(t, 0) = 0 for all t so that

lim
t→0

f(t, 0) = 0.

On the other hand if (x, y) = (t, t) then f(t, t) = 1
2 so that

lim
t→0

f(t, t) =
1

2
.

Because two paths yield different limits, there is no limit at (0, 0) so the function is not
continuous there.

12. Determine whether the function f(x, y) = x3y4 is differentiable at (1, 2).

f(1, 2) = 16. The partial derivatives are

fx(x, y) = 3x2y4; fx(1, 2) = 48, fy(x, y) = 4x3y3; fy(1, 2) = 32.

The tangent plane is

z = λ(x, y) = f(1, 2) + fx(1, 2)(x− 1) + fy(1, 2)(y − 2) = 16 + 48(x− 2) + 32(y − 2).
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The function is differentiable at (1, 2) if it is almost linear there (well approximated by its
tangent plane), namely,

lim
(h,k)→(0,0)

|f(1 + h, 2 + k)− λ(1 + h, 2 + k)|√
h2 + k2

= 0.

To see if f is almost linear at (1, 2) we find

f(1 + h, 2 + k)− λ(1 + h, 2 + k) = (1 + h)3(2 + k)4 − [16 + 48h+ 32k]

=
[
1 + 3h+ 3h2 + h3

] [
16 + 32k + 24k2 + 8k3 + k4

]
− [16 + 48h+ 32k]

=
[
16 + 32k + 24k2 + 8k3 + k4

]
+ 3h

[
16 + 32k + 24k2 + 8k3 + k4

]
+
[
3h2 + h3

] [
16 + 32k + 24k2 + 8k3 + k4

]
− [16 + 48h+ 32k]

=
[
24k2 + 8k3 + k4

]
+ 3h

[
32k + 24k2 + 8k3 + k4

]
+
[
3h2 + h3

] [
16 + 32k + 24k2 + 8k3 + k4

]
Thus the difference is quadratic in (h, k) and tends to zero faster than linear. To see it, let
r =
√
h2 + k2 so that |h| ≤ r and |k| ≤ r. Using this estimate, we find

|f(1 + h, 2 + k)− λ(1 + h, 2 + k)| ≤ 24|k|2 + 8|k|3 + |k|4

+ 3|h|
[
32|k|+ 24|k|2 + 8|k|3 + |k|4

]
+
[
3|h|2 + |h|3

] [
16 + 32|k|+ 24|k|2 + 8|k|3 + |k|4

]
≤ 24r2 + 8r3 + r4

+ 3r
[
32r + 24r2 + 8r3 + r4

]
+
[
3r2 + r3

] [
16 + 32r + 24r2 + 8r3 + r4

]
= 168r2 + 192r3 + 129r4 + 51r5 + 11r6 + r7.

The difference quotient has the bounds

0 ≤ |f(1 + h, 2 + k)− λ(1 + h, 2 + k)|√
h2 + k2

≤ 168r + 192r2 + 129r3 + 51r4 + 11r5 + r6.

In the limit as (h, k)→ (0, 0) so r → 0 we get

0 ≤ lim
(h,k)→(0,0)

|f(1 + h, 2 + k)− λ(1 + h, 2 + k)|√
h2 + k2

≤ 0.

In other words, f(x, y) is almost linear (well approximated by a linear function) at (1, 2)
which is the definition of being differentiable at (1, 2).

13. Determine whether the function is differentiable at (0, 0).

f(x, y) =


xy2

x2 + y2
, if (x, y) 6= (0, 0);

0, if (x, y) = (0, 0).
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Observe that f(x, 0) = f(0, y) = 0 for all x, y so that both partial derivatives are defined at
zero and equal zero fx(0, 0) = fy(0, 0) = 0. If f(x, y) were differentiable, then it would be
almost linear there and would be well approximated by its tangent plane

z = λ(x, y) = f(0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y − 0) = 0.

Now compute the limit of the difference quotient

lim
(h,k)→(0,0)

f(0 + h, 0 + k)− λ(0 + h, 0 + k)

‖(h, k)‖
= lim

(h,k)→(0,0)

hk2

(h2 + k2)
3/2

which does not exist. The limit along the path (h, k) = (t, 0) yields zero whereas the
limit along the path (h, k) = (t, t) yields 2−3/2. Since the two limits along the two paths are
inconsistent, there is no two-dimensional limit: the tangent plane does not well approximate
the surface z = f(x, y) so the function is not differentiable at (0, 0).

14. Find
∂z

∂u
. Express your answer in terms of (u, v).

z = x3exy, x = u2 − v2, y = u sin v.

Using the chain rule

∂z

∂u
=
∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u

=
(
3x2exy + x3yexy

)
(2u) +

(
x4exy

)
(sin v)

= exy
[
(6x2 + 2x3y)u+ x4 sin v

]
= e(u

2−v2)u sin v
[(

6(u2 − v2)2 + 2(u2 − v2)3u sin v
)
u+ (u2 − v2)4 sin v

]
15. A function is homogeneous of degree one if f(tx, ty) = tf(x, y) for all t > 0. Prove Euler’s

Theorem that such a function satisfies

f(x, y) = xfx(x, y) + yfy(x, y).

Differentiating with respect to t using the chain rule we find the left side

∂

∂t
f(tx, ty) = xfx(tx, ty) + yfy(tx, ty).

Differentiating the right side
∂

∂t
(tf(x, y)) = f(x, y).

Since both are equal, for t = 1 we get Euler’s Theorem follows.

16. Use the total differential to approximate the change in z as (x, y) moves from P to Q. Use
a calculator to find the exact change (up to the accuracy of your calculator).

z = Atn(xy), P = (−2.− 0.5), Q = (−2.03,−0.51).

The total differential is

dz = fx(x, y) dx+ fy(x, y) dy

=
y dx

1 + x2y2
+

x dy

1 + x2y2
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At (x, y) = (−2,−0.5), dx = ∆x = −.03 and dy = ∆y = −0.01. This gives the approxima-
tion

∆z ≈ dz =
y dx+ x dy

1 + x2y2
=

(−0.5)(−.03) + (−2)(−.01)

1 + (−0.5)2(−2)2
=
.015 + .02

1 + 1
= 0.0175.

The exact (up to calculator error) difference is

∆z = f(−2.03,−0.51)− f(−2,−0.5) = 0.01734214.

17. Find the minimum distance between the point (1, 2, 0) and the cone z2 = x2 + y2.

We illustrate two approaches to this problem. When we use polar coordinates, the problem
is fairly difficult. When we represent the cone as a graph it is easier.

In the first method, we use polar coordinates for the cone, where z = r. Thus for 0 ≤ r and
0 ≤ θ < 2π, the points on the cone are given by

x = r cos θ, y = r sin θ, z = ±r.

Since the positive and negative nappes are equidistant from the point on the z = 0 plane,
we can solve for the z ≥ 0 closest point. The maximum distance occurs when the maximum
squared distance occurs. The squared distance to the point (1, 2, 0) is

f(r, θ) = (x− 1)2 + (y − 2)2 + (z − 0)2

= (r cos θ − 1)2 + (r sin θ − 2)2 + r2

= r2 cos2−2r cos θ + 1 + r2 sin2 θ − 4r sin θ + 4 + r2

= 2r2 − 2r cos θ − 4r sin θ + 5.

The partial derivatives are

fr = 4r − 2 cos θ − 4 sin θ, fθ = 2r sin θ − 4r cos θ

Setting equal to zero

2 cos θ + 4 sin θ = 4r

(4 cos θ − 2 sin θ)r = 0

If r = 0 then f(0, θ) = 5. Otherwise r > 0 can be cancelled. Solving for sin θ and cos θ we
find

cos θ = 0.4r, sin θ = 0.8r

But
1 = cos2 θ + sin2 θ = 0.16r2 + 0.64r2 = 0.8r2

so

r =
1

2

√
5, cos θ =

1

5

√
5, sin θ =

2

5

√
5.

Hence the closest points on the cone are

(x, y, z) = (r cos θ, r sin θ,±r) =

(
1

2
, 1,±1

2

√
5

)
whose distance to the point (1, 2, 0) is

√
(x− 1)2 + (y − 2)2 + z2 =

√
1

4
+ 1 +

5

4
=

√
5

2
.
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This is less than
√

5, the distance to the singular point (origin) so is the minimum distance
to the cone.

For the second method, we determine the distance to the upper nappe. By reflection
symmetry across the z = 0 plane, we get the same distance to the lower nappe.

Write the surface as z =
√
x2 + y2. Then the squared distance of (x, y, z) to (1, 2, 0) is

g(x, y) = (x− 1)2 + (y − 2)2 + (z − 0)2

= x2 − 2x+ 1 + y2 − 4y + 4 + x2 + y2

= 2x2 − 2x+ 2y2 − 4y + 5.

The partial derivatives vanish if

gx = 4x− 2 = 0

gy = 4y − 4 = 0.

Thus there is only one critical point at x = 1
2 and y = 1 where z =

√
x2 + y2 = 1

2

√
5. We

have
gxx = 4, gxy = 0, gyy = 4, D = gxxgyy − g2xy = 16.

Since both gxx and D are positive at ( 1
2 , 1), this is a local minimum. Because the surface is

an elliptic paraboloid, this is a global minimum. The distance to the cone is
√
g( 1

2 , 1) =
√

5
2 .

18. Using Lagrange Multipliers, show that for all x, y, z we have

(x3 + y3 + z3)2 ≤ (x2 + y2 + z2)3.

We maximize and minimize the function f(x, y, z) = x3 + y3 + z3 subject to the constraint
g(x, y, z) = x2 + y2 + z2 = 1. At the critical points, the four equations for x, y, z, λ hold

∇f(x, y, z) = λ∇g(x, y, z), g(z, y, z) = 1.

Computing,
∇f = (3x2, 3y2, 3z2) = λ(2x, 2y, 2z) = λ∇g

which yields the equations

x(3x− 2λ) = 0

y(3y − 2λ) = 0

z(3z − 2λ) = 0

x2 + y2 + z2 = 1

These imply that

x = 0 or x =
2λ

3
,

y = 0 or y =
2λ

3
,

z = 0 or z =
2λ

3
.
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Of these eight possibilities, only (x, y, z) = (0, 0, 0) does not occur since x2 + y2 + z2 = 1.
One possibility is that

x = y = z =
2λ

3

so that

1 = x2 + y2 + z2 = 3

(
2λ

3

)2

=
4

3
λ2

implies

λ = ±
√

3

2
, and x = y = z = ± 1√

3
.

For these values

f(x, y, z) = 3

(
± 1√

3

)3

= ± 1√
3
.

Three possibilities have one of the variables zero, say

x = 0, and y = z =
2λ

3

so that

1 = x2 + y2 + z2 = 2

(
2λ

3

)2

=
8

9
λ2

implies

λ = ± 3

2
√

2
, and y = z = ± 1√

2
.

For these values

f(x, y, z) = 2

(
± 1√

2

)3

= ± 1√
2
.

The last three possibilities have two of the variables zero, say

x = y = 0, and z =
2λ

3

so that

1 = x2 + y2 + z2 =

(
2λ

3

)2

=
4

9
λ2

implies

λ = ±2

3
, and z = ±1.

For these values
f(x, y, z) = (±1)

3
= ±1.

It follows that −1 ≤ f ≤ 1 at all critical points. Since the sphere is closed and bounded,
and f is smooth, the critical points include the global minimum and maximum. In other
words

(x3 + y3 + z3)2 ≤ 1

for all (x, y, z) on the sphere x2 +y2 +z2 = 1. Equality holds if (x, y, z) is on the coordinate
axes.

To get the inequality for all triples (u, v, w) we assume (u, v, w) 6= (0, 0, 0) and normalize

x =
u√

u2 + v2 + w2
, y =

v√
u2 + v2 + w2

, z =
w√

u2 + v2 + w2
.
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so that u2 + v2 + w2 = 1. The inequality implies{(
u√

u2 + v2 + w2

)3

+

(
v√

u2 + v2 + w2

)3

+

(
w√

u2 + v2 + w2

)3
}2

≤ 1

which is equivalent to
(u3 + v3 + w3)2 ≤ (u2 + v2 + w2)3.

This inequality also holds for u = v = w = 0, establishing the inequality for all (u, v, w).

19. Find all critical points, local and global maximum and minimum points in D = [−2, 2] ×
[−2, 2] of

f(x, y) = x3 + 3xy − y3.

The polynomial may have interior critical points or boundary extreme points, but no sin-
gular points.

The vanishing of partial derivatives yields

0 = fx(x, y) = 3x2 + 3y,

0 = fy(x, y) = 3x− 3y2.

The first equation says y = −x2 which is substituted into the second

0 = x− (−x2)2 = x(1− x3) = x(1− x)(1 + x+ x2)

whose roots are

x = 0, 1,
−1±

√
1− 4

2
.

The last two are complex, so the gradient vanishes at (0, 0) and (1,−1) where the function
equals f(0, 0) = 0 and f(1,−1) = −1. Computing second derivatives

fxx = 6x, fxy = 3, fyy = −6y.

Thus
D = fxxfyy − f2xy = −36xy − 9, D(0, 0) = −9, D(1,−1) = 27.

Thus (0, 0) is a saddle since D(0, 0) < 0 and (1,−1) is local minimum since D(1,−1) > 0
and fxx(1,−1) = 6 > 0.

At the boundary x = −2, f(−2, y) = −8 − 6y − y3 is a decreasing function so there are
no boundary critical points. At the corners f(−2,−2) = 12 and f(−2, 2) = −28. At
the boundary x = 2, f(2, y) = 8 + 6y − y3. fy(2, y) = 6 − 3y2 is zero when y = ±

√
2.

fyy(2, y) = −6y so on the boundary line, (2,−
√

2) is local min since fyy(2,−
√

2) > 0 and
(2,
√

2) is local max since fyy(2,−
√

2) < 0. There f(2,−
√

2) = 8− 6
√

2 + 23/2 = 8− 2
√

2
and f(2,

√
2) = 8 + 6

√
2− 23/2 = 8 + 2

√
2. At the corners f(2,−2) = 4 and f(2, 2) = 12.

At the boundary y = −2, f(x,−2) = x3 − 6x + 8 with fx(x,−2) = 3x2 − 6 zero if x =
±
√

2. fxx(x,−2) = 6x so on the line, x = −
√

2 is local max and x =
√

2 is local min
with values f(−

√
2,−2) = 8 − 2

√
2 and f(

√
2,−2) = 8 − 2

√
2. At the boundary y = 2,

f(x, 2) = x3 + 6x− 8 which is increasing so without boundary critical points.

Looking at the values, the smallest among boundary points and interior critical points is at
(−2, 2) where f(−2, 2) = −28 is the global minimum. The global maximum is at (−2,−2)
and (2, 2) where f(−2,−2) = f(2, 2) = 12.
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