Math $2210 \S 4$.
Treibergs

First Midterm Exam
-

Name: \qquad
February 6, 2019

1. Let $\quad \mathbf{V}=2 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}, \quad \mathbf{W}=5 \mathbf{i}-4 \mathbf{k}, \quad \mathbf{F}(t)=6 \mathbf{i}+7 t \mathbf{j}+8 t^{2} \mathbf{k}$.

For these vectors, compute or find and explain the following:
(a) $\begin{gathered}\mathbf{V} \times \mathbf{W}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 4 \\ 5 & 0 & -4\end{array}\right|=[3(-4)-4 \cdot 0] \mathbf{i}+[4 \cdot 5-2(-4)] \mathbf{j}+[2 \cdot 0-3 \cdot 5] \mathbf{k} \\ =-12 \mathbf{i}+28 \mathbf{j}-15 \mathbf{k} .\end{gathered}$
(b) $\mathbf{V} \cdot(\mathbf{W} \times \mathbf{V})=0$ because $\mathbf{W} \times \mathbf{V}$ is perpendicular to \mathbf{V}.
(c) $\left\|\operatorname{proj}_{\mathbf{V}} \mathbf{W}\right\|=\frac{|\mathbf{V} \cdot \mathbf{W}|}{\|\mathbf{V}\|}=\frac{|2 \cdot 5+3 \cdot 0+4(-4)|}{\sqrt{2^{2}+3^{2}+4^{4}}}=\frac{|-6|}{\sqrt{29}}=\frac{6}{\sqrt{29}}$.
(d) $\operatorname{proj}_{\mathbf{V}} \mathbf{W}=\frac{(\mathbf{V} \cdot \mathbf{W})}{\|\mathbf{V}\|^{2}} \mathbf{V}=\frac{-6}{29}(2 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k})=-\frac{12}{29} \mathbf{i}-\frac{18}{29} \mathbf{j}-\frac{24}{29} \mathbf{k}$.
(e) $\frac{d}{d t}\|\mathbf{F}(t) \times \mathbf{F}(t)\|=0$ because $\mathbf{F}(t) \times \mathbf{F}(t)=\mathbf{0}$ is a constant vector.
2. Consider a line and a plane in three space given by the equations

$$
\begin{gathered}
\mathbf{r}(t)=\mathbf{P}+t \mathbf{V} \\
\mathbf{N} \cdot(\mathbf{X}-\mathbf{Q})=0
\end{gathered}
$$

where $\mathbf{P}=(4,5,6), \mathbf{V}=(1,4,5), \mathbf{N}=(3,-2,1), \mathbf{Q}=(7,7,7)$ and $\mathbf{X}=(x, y, z)$ is a variable point.
(a) Show that the line and the plane are parallel.

The normal to the plane \mathbf{N} has to be perpendicular to the direction \mathbf{V} of the line for the line to be parallel to the plane. Indeed the vectors are perpendicular:

$$
\mathbf{N} \cdot \mathbf{V}=3 \cdot 1+(-2) 4+1 \cdot 5=0
$$

(b) Compute the distance between the line and the plane.

The distance between the line and the plane is the length of the projection of a vector from the plane to the line, $\mathbf{P}-\mathbf{Q}=(-3,-2,-1)$, onto the normal direction. Thus

$$
d=\left\|\operatorname{proj}_{\mathbf{N}}(\mathbf{P}-\mathbf{Q})\right\|=\frac{|\mathbf{N} \cdot(\mathbf{P}-\mathbf{Q})|}{\|\mathbf{N}\|}=\frac{|3(-3)+(-2)(-2)+1(-1)|}{\sqrt{3^{2}+(-2)^{2}+1^{2}}}=\frac{6}{\sqrt{14}}
$$

3. Consider the line of intersection between the two planes

$$
\begin{array}{r}
x+2 y+3 z=4 \\
8 x+7 y+6 z=5
\end{array}
$$

(a) Find a point \mathbf{P} on the line.
(b) Find a direction vector \mathbf{V} of the line.
(c) Find the parametric equations of the line.
(d) Find the symmetric equations of the line.

We first solve the two equations simultaneously to eliminate one of the unknowns. Multiply the first equation by eight

$$
\begin{aligned}
8 x+16 y+24 z & =32 \\
8 x+7 y+6 z & =5
\end{aligned}
$$

Subtracting the second yields

$$
9 y+18 z=27
$$

which is the same as

$$
y+2 z=3
$$

Setting $z=t$ we find

$$
y=3-2 t
$$

and

$$
x=4-2 y-3 z=4-2(3-2 t)-3 t=-2+t
$$

Thus the parametic form of the line is

$$
\text { (c.) } \quad x=-2+t, \quad y=3-2 t, \quad z=t \text {. }
$$

Solvng for t in each term gives the symmetric form of the line

$$
\text { (d.) } \quad t=\frac{x+2}{1}=\frac{y-3}{-2}=\frac{z-0}{1} \text {. }
$$

A point on the line is when $t=0$ or (a.) $\quad \mathbf{P}=(-2,3,0)$. The direction of the line is the velocity of the parametric form, or the denominators in the symmetric form, namely, (b.) $\quad \mathbf{V}=(1,-2,1)$.
4. Consider a sphere in space that passes through the distinct points \mathbf{V} and \mathbf{W} and whose center lies on the line from \mathbf{V} to \mathbf{W}.
(a) Find its center \mathbf{C}.
(b) Find its radius r.
(c) Find its equation in terms of \mathbf{V}, \mathbf{W} and the variable point $\mathbf{X}=(x, y, z)$.

The only way a sphere can pass through two points and have its center on the line through the two points is if the center is the midpoint of the two points

$$
\text { (a.) } \quad \mathbf{C}=\frac{1}{2}(\mathbf{V}+\mathbf{W}) .
$$

Then the radius is half the distance between the two ponts

$$
\text { (a.) } \quad r=\frac{1}{2}\|\mathbf{V}-\mathbf{W}\| \text {. }
$$

Hence the equation of the sphere with this center and radius is

$$
\text { (c.) } \quad\|\mathbf{X}-\mathbf{C}\|^{2}=\frac{1}{4}\|\mathbf{V}-\mathbf{W}\|^{2}
$$

5. Suppose that $\mathbf{r}(t)$ is a curve in \mathbb{R}^{3}. You know its location $\mathbf{P}=(3,1,0)$ and velocity $\mathbf{V}=$ $(2,0,1)$ at time $t=0$. You also know its acceleration at all times $\mathbf{a}(t)=(0,-\cos t,-\sin t)$. Find its position $\mathbf{r}(t)$ at all times.
Because the velocity $\mathbf{v}^{\prime}=\mathbf{a}$, we recover the change of velocity by integration

$$
\begin{aligned}
\mathbf{v}(t)-\mathbf{v}(0) & =\int_{0}^{t} \mathbf{a}(t) d t \\
\mathbf{v}(t)-(2,0,1) & =\left(\int_{0}^{t} 0 d t,-\int_{0}^{t} \cos t d t,-\int_{0}^{t} \sin t d t\right) \\
& =(0,-\sin t, \cos t-1)
\end{aligned}
$$

Hence, the velocity vector for all time is

$$
\mathbf{v}(t)=(2,-\sin t, \cos t)
$$

Now the $\mathbf{r}^{\prime}=\mathbf{v}$ so by integrating,

$$
\begin{aligned}
\mathbf{r}(t)-\mathbf{r}(0) & =\int_{0}^{t} \mathbf{v}(t) d t \\
\mathbf{r}(t)-(3,1,0) & =\left(\int_{0}^{t} 2 d t,-\int_{0}^{t} \sin t d t, \int_{0}^{t} \cos t d t\right) \\
& =(2 t, \cos t-1, \sin t)
\end{aligned}
$$

Hence, the position vector for all time is

$$
\mathbf{r}(t)=(3+2 t, \cos t, \sin t)
$$

6. Let the space curve be $\quad \mathbf{r}(t)=3(\sin t) \mathbf{i}+5(\cos t) \mathbf{j}+4(\sin t) \mathbf{k}$.

For each t, find the following:
(a) The speed $\frac{d s}{d t}$.
(b) The distance s along the curve from $\mathbf{r}(0)$.
(c) The unit tangent vector \mathbf{T}.
(d) The curvature of the space curve κ.
(e) The normal vector \mathbf{N}.

Differentiation we find

$$
\mathbf{r}^{\prime}(t)=3(\cos t) \mathbf{i}-5(\sin t) \mathbf{j}+4(\cos t) \mathbf{k}
$$

Hence the velocity is using $3^{2}+4^{2}=5^{2}$,

$$
\frac{d s}{d t}=\left\|\mathbf{r}^{\prime}\right\|=\sqrt{3^{2} \cos ^{2} t+5^{2} \sin ^{2} t+4^{2} \cos ^{2} t}=\sqrt{5^{2}\left(\cos ^{2} t+\sin ^{2} t\right)}=5
$$

Thus the length along the curve from 0 to t is

$$
s(t)=\int_{0}^{t} \frac{d s}{d t}(t) d t=\int_{0}^{t} 5 d t=5 t
$$

The unit tangent vector is

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\frac{d s}{d t}}=\frac{3}{5}(\cos t) \mathbf{i}-(\sin t) \mathbf{j}+\frac{4}{5}(\cos t) \mathbf{k}
$$

The curvature is the norm of the rate of change of \mathbf{T} with respect to s. Computing,

$$
\mathbf{T}^{\prime}=\frac{d}{d t} \mathbf{T}(t)=\frac{1}{5}(-3(\sin t) \mathbf{i}-5(\cos t) \mathbf{j}-4(\sin t) \mathbf{k})
$$

or

$$
\kappa=\left\|\frac{d}{d s} \mathbf{T}\right\|=\frac{\left\|\mathbf{T}^{\prime}\right\|}{\frac{d s}{d t}}=\frac{1}{25} \sqrt{3^{2} \sin ^{2} t+5^{2} \cos ^{2} t+4^{2} \sin ^{2} t}=\frac{1}{5}
$$

The normal vector is in the $\mathbf{T}^{\prime}(t)$ direction, thus

$$
\mathbf{N}=\frac{\mathbf{T}^{\prime}}{\left\|\mathbf{T}^{\prime}\right\|}=-\frac{3}{5}(\sin t) \mathbf{i}-(\cos t) \mathbf{j}-\frac{4}{5}(\sin t) \mathbf{k}
$$

because $\left\|\mathbf{T}^{\prime}\right\|=1$. Indeed, we can also recover κ and \mathbf{N} from the formula

$$
\kappa \mathbf{N}=\frac{d}{d s} \mathbf{T}=\frac{\mathbf{T}^{\prime}}{\frac{d s}{d t}}=\frac{1}{5}\left(-\frac{3}{5}(\sin t) \mathbf{i}-(\cos t) \mathbf{j}-\frac{4}{5}(\sin t) \mathbf{k}\right) .
$$

