
Math 2210 § 4.
Treibergs

First Midterm Exam Name: Practice Problems
January 17, 2019

1. Graph the curve. Is the curve closed? simple? Find x,y,
dy

dx
and

d2 y

dx2
at t = 0. Obtain the

Cartesian equation of the parameterized curve.

x = t3 − 2t; y = t2 − 2t; −2 ≤ t ≤ 2.

Figure 1: Problem 1.

Here is the output from my Grapher program on my laptop Macintosh. The curve starts
at (x(−2), y(−2)) = (−4, 8) and ends at (x(2), y(2)) = (4, 0). Observe that y = (t− 1)2 − 1
so that y = −1 when t = 1 and y ≥ −1 for all t. Solving for t in the second equation
t2 − 2t− y = 0 we find from the quadratic formula

t =
2±
√

4 + 4y

2
= 1±

√
1 + y

which makes sense for y ≥ −1. There are two branches, the one corresponding to −2 ≤ t ≤ 1
when we take the “−” root and to 1 ≤ t ≤ 2 when we take the “+” root.

Substituting into the other equation, x = t(t2 − 2) we see that for 1 ≤ t ≤ 2 where we take
the “+” root

x = (1 +
√

1 + y)
[
(1 +

√
1 + y)2 − 2

]
= (1 +

√
1 + y)

[
(1 + 2

√
1 + y + 1 + y)− 2

]
= (1 +

√
1 + y)

[
y + 2

√
1 + y

]
= [y + 2(1 + y)] + [2 + y]

√
1 + y

= [3y + 2] + [2 + y]
√

1 + y

For −3 ≤ t ≤ 1 where we take the “−” root

x = (1−
√

1 + y)
[
(1−

√
1 + y)2 − 2

]
= (1−

√
1 + y)

[
(1− 2

√
1 + y + 1 + y)− 2

]
= (1−

√
1 + y)

[
y − 2

√
1 + y

]
= [y + 2(1 + y)]− [2 + y]

√
1 + y

= [3y + 2]− [2 + y]
√

1 + y
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Notice that the two branches have x as a function of y and that the x for 1 ≤ t ≤ 2 is strictly
greater than the x for −2 ≤ t < 1 over the common height −1 < y ≤ 0. This means that
the two curves only intersect when t = 1 or (x, y) = (−1,−1). This means that the curve
is simple (no self intersections and not closed (starting and ending points are different).

Another way to combine both equations into a single one is to isolate and square the radical

(x− 3y − 2)2 = (2 + y)2(1 + y).

Finally, let’s compute the derivatives. At t = 0, (x(0), y(0)) = (0, 0).

dx

dt
= 3t2 − 2;

dy

dt
= 2t− 2;

Since
dx

dt
(0) = −2 6= 0 we may compute

y′ =
dy

dx
=

dy
dt
dx
dt

=
2t− 2

3t2 − 2

so
dy

dx

∣∣∣∣
t=0

=
2t− 2

3t2 − 2

∣∣∣∣
t=0

=
−2

−2
= 1.

Note that by the quotient rule

dy′

dt
=

2(3t2 − 2)− (2t− 2)6t

(3t2 − 2)2
=
−6t2 + 12t− 4

(3t2 − 2)2

Also

d2 y

dx2
=

dy′

dt
dx
dt

=

−6t2+12t−4
(3t2−2)2

3t2 − 2
=
−6t2 + 12t− 4

(3t2 − 2)3

so
d2 y

dx2

∣∣∣∣
t=0

=
−6t2 + 12t− 4

(3t2 − 2)3

∣∣∣∣
t=0

=
−4

−8
=

1

2
.

2. Find the center and radius of the sphere whose equation is

x2 + y2 + z2 + 8x− 22y − 10z + 98 = 0.

Completing the squares we find

0 =
[
(x+ 4)2 − 16

]
+
[
(y − 11)2 − 121

]
+
[
(z − 5)2 − 25

]
+ 98

= (x+ 4)2 + (y − 11)2 + (z − 5)2 − 64

Thus the center is C = (−4, 11, 5) and the radius is r =
√

64 = 8 .

3. Find the equation of the sphere whose center is C = (7, 9, 11) and which is tangent to the
plane x+ 2y + 3z = 100.

We need to compute the distance from the plane L to the point C. The normal vector to
the plane is N = (1, 2, 3). The dot product is N · C = 7 + 18 + 33 = 58. If Q were a point
on the plane then N · Q = D = 100. Let θ = ∠(N,C − Q) be the angle between N and
C −Q. Then this distance is

r = ‖projN (C −Q)‖ =
∣∣cos θ ‖C −Q‖

∣∣ =
|N · (C −Q)|
‖N‖ ‖C −Q‖

‖C −Q‖ =
|N · C −D|
‖N‖

=
|58− 100|√

1 + 4 + 9
=

42√
14

= 3
√

14.
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Figure 2: Problem 3.

Hence the equation of sphere with center C and radius r is

(x− 7)2 + (y − 9)2 + (z − 11)2 = 9 · 14

or
x2 + y2 + z2 − 14x− 18y − 22z + 125 = 0.

4. Find the arclength of the given curve.

x = t2, y =
4
√

3

3
t3/2, z = 3t, 1 ≤ t ≤ 9.

Plug into the arclength formula

L =

∫ 3π

t=0

√(
dx

dt

)2

+

(
dx

dt

)2

+

(
dx

dt

)2

dt.

Computing,
dx

dt
= 2t;

dy

dt
= 2
√

3 t1/2;
dx

dt
= 3.

Substituting,

L =

∫ 3

t=1

√
4t2 + 12t+ 9 dt

=

∫ 3

t=1

2t+ 3 dt

=

[
t2 + 3t

]∣∣∣∣3
t=1

=

[
32 + 3 · 3

]
−
[
1 + 3

]
= 14 .

5. An objects position P changes so that its distance from (−3, 2, 1) is always twice the distance
from (3, 2, 1). Show that P is on a sphere and find its center and radius.

Write the equation for P = (x, y, z) geometrically and see what it is in coordinates. Let the
center points be denoted C = (−3, 2, 1) and D = (3, 2, 1). P ’s distance to C1 being twice
its distance from C2 becomes the equation

‖P − C1‖ = 2‖P − C2‖.

Squaring we find

(x+3)2 +(y−2)2 +(z−1)2 = ‖P −C1‖2 = 4‖P −C2‖2 = 4
(
(x− 3)2 + (y − 2)2 + (z − 1)2

)
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so
0 = 4(x− 3)2 − (x+ 3)2 + 3(y − 2)2 + 3(z − 1)2.

The first two terms are after completing the square

4(x− 3)2 − (x+ 3)2 = 4
(
x2 − 6x+ 9

)
−
(
x2 + 6x+ 9

)
= 3x3 − 30x+ 27

= 3
(
x2 − 10x+ 9

)
= 3

(
(x− 5)2 − 16

)
.

Substituting into the equation for P ,

0 = 3(x− 5)2 − 3 · 16 + 3(y − 2)2 + 3(z − 1)2.

which simplifies to
(x− 5)2 + (y − 2)2 + (z − 1)2 = 16

so the center of the desired circle is C = (5, 2, 1) and radius is r = 4 .

6. Let n points be equally spaced on a circle and let v1, v2, . . .vn, be the vectors from the
center of the circle to these n points. Show that

v1 + v2 + · · ·+ vn = 0.

Figure 3: Unrotated and Rotated n-gon for Problem 6.

Consider the regular n-gon connecting the ends of the vectors from v1 to v2 all the way
around to vn to v1. The vectors along the rim are v2 − v1, v3 − v2, all the way around
to vn − vn−1 to v1 − vn. Because the spokes are equally spaced around the circle, at each
corner, the angle from spoke to rim vectors is the same

γ = ∠(v1,v2 − v1) = ∠(v2,v3 − v2) = · · · = ∠(vn−1,vn − vn−1) = ∠(vn,v1 − vn).

Thus if the original n-gon is rotated π − γ radians to a new polygon, v′2, . . .v′n then the
rim vectors of the rotated polygon point in the same direction as the original spoke vectors
and their lengths are shortened by a scaling factor s = ‖v1‖/‖v2 − v1‖.
Their sum must be zero because the polygon closes. Thus

v1 + v2 + · · ·+ vn = s [(v′2 − v′1) + (v′3 − v′2) + · · ·+ (v′1 − v′n)] = 0.
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7. Find the smallest angle between the main diagonals of a rectangular box 4 feet by 6 feet by
10 feet.

Aligning the box with coordinate axes, we may take its vertices to be (0, 0, 0),(4, 0, 0),
(0, 6, 0), (4, 6, 0), (0, 0, 10), (4, 0, 10), (0, 6, 10) and (4, 6, 10). The four main diagonals con-
nect (0, 0, 0) to (4, 6, 10), (4, 0, 0) to (0, 6, 10), (0, 6, 0) to (4, 0, 10) and (0, 0, 10) to (4, 6, 0).
Thus they have direction vectors v1 = (4, 6, 10), v2 = (−4, 6, 10), v3 = (4,−6, 10) and v4 =
(4, 6,−10), respectively. All four diagonals have length squared ‖vi‖2 = 16+36+100 = 152.
The cosines of angles between the six intersecting main diagonals angles

± cos∠(v1,v2) = ± cos∠(v3,v4) =
v1 · v2

‖vi‖2
=
−16 + 36 + 100

152
=

15

19

± cos∠(v1,v3) = ± cos∠(v2,v4) =
v1 · v3

‖vi‖2
=

16− 36 + 100

152
= −10

19

± cos∠(v1,v4) = ± cos∠(v2,v3) =
v1 · v4

‖vi‖2
=

16 + 36− 100

152
= − 6

19

where minus cosine occurs if we reverse one of the diagonals. The smallest angle occurs
between the largest cosine, which is between the v1 and v2 where cos θ = 15/19 or θ =

arccos 15/19 = 0.661 radians.

8. Find the distance between the parallel planes

5x− 3y − 2z = 5, −5x+ 3y + 2z = 7.

The normal vector to both is N = (5,−3,−2) so ‖N‖ =
√

25 + 9 + 4 =
√

38. Let P be a
point on the first plane and Q on the second. Then the distance between the planes is the
length of the projection of Q− P onto the N direction

d = ‖projN (Q− P )‖ = | cos θ| ‖Q− P‖

where θ = ∠(N,Q − P ) is the angle from the normal to Q − P . By inspection, the point
P = (1, 0, 0) is in the first plane and Q = (−1, 0, 1) is in the second so Q − P = (−2, 0, 1)
and N · (Q− P ) = −10 + 0− 2 = −7. Computing the length

d = | cos θ| ‖Q−P‖ =

∣∣∣∣ N · (Q− P )

‖N‖ ‖Q− P‖

∣∣∣∣ ‖Q−P‖ =
|N · (Q− P )|
‖N‖

=
| − 7|√

38
=

7√
38

= 1.136.

9. Let a = (a1, a2, a3) and b = (b1, b2, b3) be fixed vectors. Show that (x − a) · (x − b) = 0 is
the equation of a sphere, and find its center and radius.

Expand the vector equation and complete the square

0 = (x− a) · (x− b)

= x · x− a · x− x · b + a · b
= x · x− (a + b) · x + a · b

=

(
x− 1

2
(a + b)

)
·
(
x− 1

2
(a + b)

)
− 1

4
(a + b) · (a + b) + a · b

=

∥∥∥∥x− 1

2
(a + b)

∥∥∥∥2 − 1

4
(a · a + a · b + b · b + a · a) + a · b
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0 =

∥∥∥∥x− 1

2
(a + b)

∥∥∥∥2 − 1

4
(a · a− 2a · b + a · a)

=

∥∥∥∥x− 1

2
(a + b)

∥∥∥∥2 − 1

4
(a− b) · (a− b)

=

∥∥∥∥x− 1

2
(a + b)

∥∥∥∥2 − 1

4
‖a− b‖2

thus the center and radius of the sphere are

C =
1

2
(a + b) , r =

1

2
‖a− b‖

namely, the sphere centered at the midpoint of a and b which passes through both points.

10. Find the area of the triangle with vertices (1, 2, 3), (3, 1, 5) and (5, 4, 6).

If v1, v2 and v3 are the vertices, the area is half the area of the parallelogram with sides
v2 − v1 and v3 − v1 which in turn is given by the length of their crossproduct. Thus

A =
1

2
‖(v2 − v1)× (v3 − v1)‖ =

1

2
‖(2,−1, 2)× (3, 2, 3)‖

=
1

2

∥∥∥∥∥∥∥∥∥∥∥∥

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

2 −1 2

3 2 1

∣∣∣∣∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥∥∥∥∥∥
=

1

2
‖ (−1− 4)i + (6− 2)j + (4 + 3)k ‖

=
1

2
‖ −5i + 4j + 7k ‖ =

1

2

√
25 + 16 + 49 =

1

2

√
90 =

3

2

√
10.

11. Find the equation of a plane through the points

(2, 3, 4), (3, 5,−7), (6,−8, 9).

If the vectors are called v1, v2 and v3, then v2 − v2 and v3 − v1 are parallel to the plane
and their cross product N = (v2 − v2) × (v3 − v1) is normal. Then the plane is given by
the point-normal formula. v2 − v2 = (1, 2,−11) and v3 − v1 = (4,−11, 5) so

N = (v2 − v2)× (v3 − v1) = (1, 2,−11)× (4,−11, 5)

=

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

1 2 −11

4 −11 5

∣∣∣∣∣∣∣∣∣∣∣∣
= (10− 121)i + (−44− 5)j + (−11− 8)k

= −111i− 49j− 19k.

The equation of the plane is thus

0 = N · (x− v1) = N · x−N · v1 = −111x− 49y +−19z − (−111 · 2− 49 · 3− 19 · 4)

or
111x+ 49y + 19z = 445.
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12. Prove Lagrange’s identity without using ‖v ×w‖ = ‖v‖ ‖w‖ sin∠(v,w).

‖v ×w‖2 = ‖v‖2 ‖w‖2 − (v ·w)2

Let v = (v1, v2, v3) and w = (w1, w2, w3). One expands the left side and the right side and
compares.

v ×w =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣∣∣∣∣
= (v2w3 − v3w2)i + (v3w1 − v1w3)j + (v1w2 − v2w1)k.

Thus the left side is

‖v ×w‖2 = (v2w3 − v3w2)2 + (v3w1 − v1w3)2 + (v1w2 − v2w1)2

= (v22w
2
3 − 2v2v3w2w2 + v23w

2
2) + (v23w

2
1 − 2v1v3w1w3 + v21w

2
3)

+ (v21w
2
2 − 2v1v2w1w2 + v22w

2
1).

The right side is after cancelling

‖v‖2 ‖w‖2 − (v ·w)2 =
(
v21 + v22 + v23

) (
w2

1 + w2
2 + w2

3

)
− (v1w1 + v2w2 + v3w3)

2

=
(
v21w

2
1 + v21w

2
2 + v21w

2
3 + v22w

2
1 + v22w

2
2 + v22w

2
3 + v23w

2
1 + v23w

2
2 + v23w

2
3

)
−
(
v21w

2
1 + v22w

2
2 + v23w

2
3 + 2v1v2w1w2 + 2v1v3w1w3 + 2v2v3w2w3

)
=
(
v21w

2
2 + v21w

2
3 + v22w

2
1 + v22w

2
3 + v23w

2
1 + v23w

2
2

)
− (2v1v2w1w2 + 2v1v3w1w3 + 2v2v3w2w3) .

This expression for ‖v×w‖2 and the one for ‖v‖2 ‖w‖2− (v ·w)2 both have the same nine
terms so they are equal.

13. Let a, b and a − b denote the three sides of a triangle whose lengths are a, b and c,
respectively. Show 2a ·b = ‖a‖2 + ‖b‖2−‖a−b‖2 and use it to peove Heron’s Formula for
the area of a triangle,

A =
√
s(s− a)(s− b)(s− c), where the semiperimeter is s =

1

2
(a+ b+ c).

Expanding the middle term yields the formula.

‖a‖2 + ‖b‖2 − ‖a− b‖2 − 2a · b = ‖a‖2 + ‖b‖2 −
(
‖a‖2 − 2a · b + ‖b‖2

)
− 2a · b = 0.

Sixteen times the square of area of the triangle given by cross product is simplified using
Lagrange’s Formula and factoring the difference of squares.

16A2 = 4‖a× b‖2

= 4‖a‖2 ‖b‖2 − (2a · b)2

= 4‖a‖2 ‖b‖2 −
(
‖a‖2 + ‖b‖2 − ‖a− b‖2

)2
=
(
2‖a‖ ‖b‖+ ‖a‖2 + ‖b‖2 − ‖a− b‖2

) (
2‖a‖ ‖b‖ − ‖a‖2 − ‖b‖2 + ‖a + b‖2

)
=
(

(‖a‖+ ‖b‖)2 − ‖a− b‖2
)(
− (‖a‖ − ‖b‖)2 + ‖a + b‖2

)
= (‖a‖+ ‖b‖+ ‖a− b‖) (‖a‖+ ‖b‖ − ‖a− b‖)
· (‖a‖ − ‖b‖+ ‖a + b‖) (−‖a‖+ ‖b‖+ ‖a + b‖)

= 2s(2s− 2c)(2s− 2b)(2s− 2a)

7



which is Heron’s Formula.

14. Find the velocity v, acceleration a and speed s of r(t) at the time t = 2.

r(t) = t sinπt i + t cosπt j + e−tk

Velocity and acceleration are first and second derivatives

v = r′ = (sinπt+ πt cosπt)i + (cosπt− πt sinπt)j− e−tk
a = r′′ = (2π cosπt− π2t sinπt)i + (−2π sinπt− π2t cosπt)j + e−tk

At time t = 2,

v(2) = (sin 2π + 2π cos 2π)i + (cos 2π − 2π sin 2π)j− e−2k = 2π i + j− e−2k ,

a(2) = (2π cos 2π − 2π2 sin 2π)i + (−2π sin 2π − 2π2 cos 2π)j + e−2k = 2π i− 2π2j + e−2k .

At t = 2, the speed is the length of the velocity

s = ‖v‖ =
√

4π2 + 1 + e−4 .

15. Assume the planet r(t) travels in a gravitational force field which points to the origin with a
magnitude proportional to the inverse square of the distance. Show that the particle satisfies
Kepler’s Second Law: the vector r(t) sweeps out equal areas in equal times.

The assumption about the force field felt by the particle is

F = −GmM r

‖r‖3

where m and M are masses of the particle and sun at the origin and gravitational constant
so that ‖F‖ ∝ ‖r‖−2. By Newton’s Law, mass times acceleration equals the force

mr′′ = F = −GmM r

‖r‖3
.

Figure 4: Kepler’s Second Law in Problem 15.

The area swept out in a time ∆t is approximately the area of the triangle with sides r(t)
and ∆r which is

∆A ≈ 1

2
‖r(t)×∆r‖.
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Dividing by ∆t this is
∆A

∆t
≈ 1

2

∥∥∥∥r(t)× ∆r

∆t

∥∥∥∥
which in the ∆t→ 0 limit becomes

dA

dt
=

1

2
‖r(t)× r′‖ .

Differentiating r(t)× r′, and using Newton’s Law above,

d

dt
(r× r′) = r′ × r′ + r× r′′ = r′ × r′ − r(t)× GM r

‖r‖3
= 0 + 0

because v × v = 0. Thus r × r′ is a constant vector with constant magnitude so
dA

dt
is

constant. Thus area swept grows proportionately to time.

16. Find parametric and symmetric equations of the line of intersection of the given pair of
planes

x− 3y + z = −1; 6x− 5y + 4z = 9.

Eliminate a variable in the two equations in three variables. Solve for x in the first and
substitute into the second.

x = 3y − z − 1, 6(3y − z − 1)− 5y + 4z = 9 =⇒ 13y − 2z = 15.

Thus if we choose z = t then y = 1
13 (2t + 15) and x = 3

13 (2t + 15) − t − 1 so we get the
parametric form of the line

x = − 7

13
t+

17

13
, y =

2

13
t+

15

13
, z = t for t ∈ R.

Eliminating t gives the symmetric form of the line

t =
x− 17

13

− 7
13

=
y − 15

13
2
13

=
z − 0

1
.

17. Find the equation of the plane containing the point (1,−1, 5) and the line

x = 1 + 2t, y = −1 + 3t, z = 4 + t.

Let P = (1,−1, 5). A vector in the plane is the tangent vector T = (2, 3, 1) (the t derivative
of the parametric line.) At t = 0 the line contains the point Q = (1,−1, 4). Thus a second
vector in the plane is P −Q = (0, 0, 1) Thus a normal vector to the plane is

N = T × (P −Q) =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

2 3 1

0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= (3− 0)i + (0− 2)j + (0− 0)k = i− 2j.

Thus the point-normal equation of the plane is N · (X − P ) = 0 or

x− 2y = 1x− 2y + 0z = N ·X = N · P = 1 · 1− 2 · (−1) + 0 · 5 = 3.
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18. Find the distance between the skew lines

x = 1 + 2t, y = −2 + 3t, z = −4t; and
x+ 4

3
=
y + 5

4
=
z

5
.

A point on the first line is when t = 0 or P = (1,−2, 0). A point on the second line is
when z = 0 so Q = (−4,−5, 0). The direction of the first line is the time derivative of the
parameter V = (2, 3,−4). The direction of the second line is W = (3, 4, 5) by symmetric
form. You can see that if X = (x, y, z) is on the line then so is X +W since every term of
the symmetric form is increased by one. The direction that is perpendicular to both lines
is the cross product of tangents

N = V ×W =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

2 3 −4

3 4 5

∣∣∣∣∣∣∣∣∣∣∣∣
= (15 + 16)i + (−12− 10)j + (8− 9)k = 31i− 22j− k.

A vector from the second line to the first is P − Q = (5, 3, 0). The distance between the
lines is the length of the projection of this vector to the normal line. Let the angle between
N and P −Q be θ = ∠(N,P −Q). Then

d = ‖projN (P −Q)‖ = | cos θ| ‖P −Q‖ =
|N · (P −Q)|
‖N‖ ‖P −Q‖

‖P −Q‖

=
|N · (P −Q)|
‖N‖

=
|31 · 5− 22 · 3− 1 · 0|√

312 + 222 + 1
=

89√
1446

= 2.340.

19. Show that r(t) lies on a plane. Find the equation of the plane. Where does the tangent line
at t = 2 intersect the xy-plane?

r(t) = 2t i + t2 j + (1− t2)k

The velocity is
v(t) = r′(t) = 2i + 2t j− 2tk

At t = 0 this is v(0) = 2 i. At t = 2 this is v(2) = 2i + 4j − 4k. If the curve is to lie in a
plane, then the normal vector should be a constant. Computing the cross product between
two velocities we find a candidate for the normal vector.

N = v(0)× v(2) =

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

2 0 0

2 4 −4

∣∣∣∣∣∣∣∣∣∣∣∣
= (0− 0)i + (0 + 8)j + (8− 0)k = 8j + 8k.

Let’s check that the curve lies in the plane through r(0) = k with normal N . Indeed

N · (r(t)− r(0)) = 0 · (2t− 0) + 8 · (t2 − 0) + 8(1− t2 − 1) = 0

for all t, so it is in this plane. By the formula N · (X − r(0)) = 0 we have the eqution of
this plane

8y − 8z = N ·X = N · r(0) = 8.

10



Plugging r(t) into this equation we see again that the curve lies in the plane

8t2 + 8(1− t2) = 8.

The tangent line at t = 2 passes through r(2) = (4, 4,−3) in the direction v(2). Thus the
parametric equation of the tangent line is

x = 4 + 2t, y = 4 + 4t, z = −3− 4t.

This line passes the xy-plane when z = 0 or when t = − 3
4 . At that time the xy coordinates

are

x = 4 + 2

(
−3

4

)
=

5

2
, y = 4 + 4

(
−3

4

)
= 1.

20. Find the unit tangent vector T (t) and the curvature κ(t) of the plane curve.

x(t) = t cos t, y(t) = t sin t

The tangent vector is

v(t) = r′(t) = (cos t− t sin t)i + (sin t+ t cos t)j

The speed is

s(t) = ‖v(t)‖ =
√

(cos t− t sin t)2 + (sin t+ t cos t)2

=
√

cos2 t− 2t cos t sin t+ t2 sin2 t+ sin2 t+ 2t cos t sin t+ t2 cos2 t

=
√

1 + t2

Thus the unit tangent vector is

T (t) =
1

s(t)
v(t) =

cos t− t sin t√
1 + t2

i +
sin t+ t cos t√

1 + t2
j

Note that

x′ = cos t− t sin t; x′′ = −2 sin t− t cos t; y′ = sin t+ t cos t; y′′ = 2 cos t− t sin t.

The curvature may be computed using the formula.

κ =
|x′y′′ − y′x′′|[

(x′)2 + (y′)2
]3/2

=
|(cos t− t sin t)(2 cos t− t sin t)− (sin t+ t cos t)(−2 sin t− t cos t)|

[(cos t− t sin t)2 + (sin t+ t cos t)2]
3/2

=
|(2 cos2 t− 3t cos t sin t+ t2 sin2 t)− (−2 sin2 t− 3 cos t sin t− t2 cos2 t)|[

(cos2 t− 2t cos t sin t+ t2 sin2 t) + (sin2 t+ 2t cos t sin t+ t2 cos2 t
]3/2

=
2 + t2

[1 + t2]
3/2

21. Find the curvature κ, the unit tangent vector T, the unit normal vector N and the binormal
vector B at t.

r(t) = e−2ti + e2tj + 2
√

2 tk

11



The velocity vector is

v(t) = r′(t) = −2e−2ti + 2e2tj + 2
√

2k

so the speed is

s(t) = ‖(t)‖ =
√

4e−4t + 4e4t + 8 =

√
(2e−2t + 2e2t)

2
= 2(e−2t + e2t) = 4 cosh 2t.

The derivative of speed is

s′ = 4(−e−2t + e2t) = 8 sinh 2t.

The acceleration is
a = v′ = 4e−2ti + 4e2tj.

We compute

−s′v + sa = −4(−e−2t + e2t)
(
−2e−2ti + 2e2tj + 2

√
2k
)

+ 2(e−2t + e2t)
(
4e−2ti + 4e2tj

)
= 16i + 16j− 8

√
2 (−e−2t + e2t)k

Its norm is

‖ − s′v + sa‖2 = ‖16i + 16j− 8
√

2 (−e−2t + e2t)k‖2

= 265 + 256 + 128(−e−2t + e2t)2

= 128(2 + e−4t + e4t) = 128(e2t + e−2t)2 = 512 cosh2 2t.

Thus the unit tangent vector is

T =
1

s
v = − e−2t

e−2t + e2t
i +

e2t

e−2t + e2t
j +

√
2

e−2t + e2t
k

The derivative of T = 1
sv is

T′ = − s
′

s2
v +

1

s
a =

−s′v + sa

s2

so the normal vector is

N =
T′

‖T′‖
=
−s′v + sa

‖ − s′v + sa‖
=

16i + 16j− 8
√

2 (−e−2t + e2t)k

‖16i + 16j− 8
√

2 (−e−2t + e2t)k‖
=

√
2 i +

√
2 j− (−e−2t + e2t)k

e2t + e−2t

The binormal vector is

B = T×N =
1

(e2t + e−2t)2

∣∣∣∣∣∣∣∣∣∣∣∣

i j k

e−2t e2t
√

2

√
2
√

2 −(e2t − e−2t)

∣∣∣∣∣∣∣∣∣∣∣∣
=

[−e4t − 1]i + [3− e−4t]j−
√

2(e2t − e−2t)k
(e2t + e−2t)2

.

The curvature is

κ =
1

s
‖T′‖ =

‖ − s′v + sa‖
s3

=
8
√

2 (e2t + e−2t)

8(e2t − e−2t)3
=

√
2

(e2t − e−2t)2
.
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22. Find the position and velocity of particle r(t) whose position and velocity at t = 0 are
r(0) = (2, 1, 5), v(0) = (1, 0, 0) and whose acceleration at all times t > −1 is

a(t) = (t+ 1)3/2 i + e−t j + cos(t)k.

This curve satisfies r′′(t) = a(t). Thus we integrate once to get velocity

r′(t)− r′(0) = v(t)− v(0) =

∫ t

0

[
(t+ 1)3/2 i + e−t j + cos(t)k

]
dt

=

[∫ t

0

(t+ 1)3/2 dt

]
i +

[∫ t

0

e−t dt

]
j +

[∫ t

0

cos(t) dt

]
k

=

[
2

5
(t+ 1)5/2

]t
0

i +

[
−e−t

]t
0

j +

[
sin(t)

]t
0

k

r′(t)− i =
2

5

[
(t+ 1)5/2 − 1

]
i +

[
1− e−t

]
j +

[
sin(t)

]
k

Integrating velocity we find

r(t)− r(0) =

∫ t

0

[(
2

5
(t+ 1)5/2 +

3

5

)
i +

(
1− e−t

)
j + sin(t)k

]
dt

=

[∫ t

0

(
2

5
(t+ 1)5/2 +

3

5

)
dt

]
i +

[∫ t

0

(
1− e−t

)
dt

]
j +

[∫ t

0

sin(t) dt

]
k

=

[
4

35
(t+ 1)7/2 +

3

5
t

]t
0

i +

[
t+ e−t

]t
0

j +

[
− cos t

]t
0

k

r(t)−
[
2i + j + 5k

]
=

[
4

35

(
(t+ 1)7/2 − 1

)
+

3

5
t

]
i +

[
t+ e−t − 1

]
j +

[
1− cos t

]
k

so for t > −1,

r(t) =

[
4

35
(t+ 1)7/2 +

66

35
+

3

5
t

]
i +

[
t+ e−t

]
j +

[
6− cos t

]
k.

23. Find the nomal and tangential components of acceleration for the curve

x(t) = t cos t, y(t) = t sin t.

Computing the velocity we have

x′(t) = cos t− t sin t, y′(t) = sin t+ t cos t.

so that the speed

ds

dt
=
√

(x′)2 + (y′)2 =
√

(cos t− t sin t)2 + (sin t+ t cos t)2

=
√

cos2 t− 2t cos t sin t+ t2 sin2 t+ sin2 t+ 2t cos t sin t+ t2 cos2 t

=
√

1 + t2

The tangential acceleration is

aT =
d2s

dt2
=

t√
1 + t2

.
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The accelerations are

x′′(t) = −2 sin t− t cos t, y′′(t) = 2 cos t− t sin t.

The curvature is

κ =
|x′y′′ − y′x′′|

((x′)2 + (y′)2)
3/2

=
|(cos t− t sin t)(2 cos t− t sin t)− (sin t+ t cos t)(−2 sin t− t cos t)|

(1 + t2)
3/2

=

∣∣2 cos2 t− 3t cos t sin t+ t2 sin2 t+ 2 sin2 t+ 3t cos t sin t+ t2 cos2 t
∣∣

(1 + t2)
3/2

=
2 + t2

(1 + t2)
3/2

.

Thus the normal acceleration is

an =

(
ds

dt

)2

κ =
(√

1 + t2
)2 2 + t2

(1 + t2)
3/2

=
2 + t2√
1 + t2

24. Derive the polar coordinate curvature formula where the derivatives are with respect to θ.

κ =
|r2 + 2ṙ2 − rr̈|

(r2 + ṙ2)
3/2

For a curve in polar coordinates, the radius is a function of the central angle r(θ). Written
in Cartesian coordinates

r(t) = r(θ) cos θ i + r(θ) sin θ j.

One way to do the problem is to plug into the formula for curvature for plane curves, as in
Problem 23. The other way is to derive the formula from the defnition of curvature, which
we do here. The tangent vector is

ṙ(t) = (ṙ cos θ − r sin θ)i + (ṙ sin θ + r cos θ) j.

Thus the speed is

ds

dθ
= ‖ṙ‖

=
√

(ẋ)2 + (ẏ)2

=
√

(ṙ cos θ − r sin θ)2 + (ṙ sin θ + r cos θ)2

=
√
ṙ2 cos2 θ − 2rṙ cos θ sin θ + r2 sin2 θ + ṙ2 sin2 θ + 2rṙ cos θ sin θ + r2 cos2 θ

=
√
ṙ2 + r2

Thus the unit tangent vector is

T =
ṙ
ds
dθ

=
1√

r2 + ṙ2

[
(ṙ cos θ − r sin θ) i + (ṙ sin θ + r cos θ) j

]
.
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Its rate of change with respect to θ is using the product rule

Ṫ = − rṙ + ṙr̈

(r2 + ṙ2)
3/2

[
(ṙ cos θ − r sin θ) i + (ṙ sin θ + r cos θ) j

]
+

+
1√

r2 + ṙ2

[
(r̈ cos θ − 2ṙ sin θ − r cos θ) i + (r̈ sin θ + 2ṙ cos θ − r sin θ) j

]
=

1

(r2 + ṙ2)
3/2

[
−(rṙ + ṙr̈) (ṙ cos θ − r sin θ) i− (rṙ + ṙr̈) (ṙ sin θ + r cos θ) j

]
+

+
1

(r2 + ṙ2)
3/2

[(
r2 + ṙ2

)
(r̈ cos θ − 2ṙ sin θ − r cos θ) i +

(
r2 + ṙ2

)
(r̈ sin θ + 2ṙ cos θ − r sin θ) j

]
=
rr̈ − 2ṙ2 − r2

(r2 + ṙ2)
3/2

[
(r cos θ + ṙ sin θ) i + (−ṙ cos θ + r sin θ) j

]
.

The curvature is thus

κ =
1
ds
dθ

‖Ṫ‖

=
1√

r2 + ṙ2

∣∣rr̈ − 2ṙ2 − r2
∣∣

(r2 + ṙ2)
3/2

√
(r cos θ + ṙ sin θ)

2
+ (−ṙ cos θ + r sin θ)

2

=

∣∣rr̈ − 2ṙ2 − r2
∣∣

(r2 + ṙ2)
2

√
r2 cos2 θ + 2rṙ cos θ sin θ + ṙ2 sin2 θ + ṙ2 cos2 θ − 2rṙ cos θ sin θ + r2 sin2 θ

=

∣∣rr̈ − 2ṙ2 − r2
∣∣

(r2 + ṙ2)
2

√
r2 + ṙ2

=

∣∣rr̈ − 2ṙ2 − r2
∣∣

(r2 + ṙ2)
3/2

,

as promised.

25. Name and sketch the graph of the following equation in three space.

x2 + y2 − 4z2 + 4 = 0.

Put the equation into standard form with one on the right side

−x
2

4
− y2

4
+
z2

1
= 1.

The trace in the xy-plane (where z = 0) is

−x
2

4
− y2

4
= 1.

which is the empty set since nonpositive left side can’t equal one on the right. The trace in
the xz-plane (where y = 0) is

−x
2

4
+
z2

1
= 1.

which is hyperbola opening in the z-directions since there is no solution with z = 0. The
trace in the xz-plane (where y = 0) is

−x
2

4
− y2

4
= 1.
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which is the empty set since nonpositive left side can’t equal one on the right. The trace in
the yz-plane (where z = 0) is

−y
2

4
+
z2

1
= 1.

which is hyperbola opening in the z-directions since there is no solution with z = 0. Thus
the graph is a hyperbola of two sheets opening along the z-axis.

We plot it in the Grapher program in my Mac (Figure 5). Since points with z = 0 don’t
occur, we solve for z in the equation

z = ±
√

1 +
x2

4
+
y2

4

and superimpose the graphs with “+” and “−.”

Figure 5: Problem 25.

26. Find the equation of the surface that results when the given curve in the xy-plane is revolved
about the x-axis,

4x2 − 3y2 = 12

Revolving about the x axis means that the orbit is a circle in the x = const. planes, where
y2, the squared radius in the y direction is replaced by the squared radius r2 = y2 + z2 in
the yz-direction. This results in the equation

4x2 − 3(y2 + z2) = 12.

The standard form of this equation is

x2

3
− y2

4
− z2

4
= 1.

which is the equation of a hyperboloid of two sheets, opening in the ±x-directions.
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27. Show that the projection in the xz-plane of the curve that is the intersection of of the given
surfaces is an ellipse, and find its major and minor diameters.

y = 4− x2, y = x2 + z2.

Eliminating the y variable from both equations (since on the curve of intersection the y’s
are the same) gives the desired curve. Thus equating y’s yields the equation

4− x2 = x2 + z2

which in standard form is
x2

2
+
z2

4
= 1,

the equation of an ellipse. Thus the minor and major radii are a =
√

2 and b = 2 so the
diameters are 2

√
2 and 4.

28. Find the volume of solid bounded by the elliptical paraboloid and the xy-plane, where h > 0.

x2

a2
+
y2

b2
= h− z.

Use the method of slabs. Since the left side is nonnegative he have 0 ≤ h− z so 0 ≤ z ≤ h.
The intersection with the z = z0 plane is the outer bounding curve

x2

(h− z0)a2
+

y2

(h− z0)b2
= 1

which is an ellipse with minor and major radii a
√
h− z0 and b

√
h− z0. The area of such

an ellipse is pi times the product of radii, or

A(z0) = πab(h− z0).

Thus the volume of the solid is the integral of area times thickness of stacked slabs, or

V =

∫ h

0

A(z) dz =

∫ h

0

πab(h− z) dz = πab

[
hz − z2

2

]h
0

=
πabh2

2
.
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