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5. One Dimensional Helly’s Theorem

Intervals are real sets like [1, 2], [1, 2), (−∞, 3], (5,∞), (−∞,∞).

Baby Helly’s Question. If J1, J2 and J3 are intervals such that any two
have a point in common, do all three have a point in common?

Answer: YES! We’ve assumed any two have a point in common so take
α12 ∈ J1 ∩ J2, α13 ∈ J1 ∩ J3 and α23 ∈ J2 ∩ J3. Sort these numbers, say,

α13 < α12 < α23.

α12 is in both J1 and J2. Is it in J3? Now α13 ∈ J3 so α12 is greater than
a point in J3. Also α23 ∈ J3 so α12 is less than a point in J3. Hence α12

is between two points of J3, which is an interval, so α12 ∈ J3 as well.



6. One Dimensional Helly’s Theorem

The one dimensional Helly’s Theorem is the same assertion for arbitrary
many intervals. The proof is similar too.

Theorem (One-Dimensional Helly’s Theorem)

Suppose Ji ⊂ R for i = 1, . . . , k is a collection of intervals such that no
two are disjoint. Then there is a point common to all k intervals.

Let αij = αji be any point in Ji ∩ Jj . Consider

β1 = max
i=1,...,k

min
j=1,...,k

αij ; β2 = min
i=1,...,k

max
j=1,...,k

αij

First, β1 ≤ β2. If i1 and i2 are indices such that β1 = minj=1,...,k αi1j and
β2 = maxj=1,...,k αi2j it follows that β1 ≤ αi1i2 = αi2i1 ≤ β2.
Second, any z ∈ [β1, β2] is in every Ji . As z ≤ maxj=1,...,k αij ∈ Ji for any
i , it is less than an element of every Ji . Similarly z ≥ minj=1,...,k αij ∈ Ji
for every i , it is also greater than a point of Ji . Thus z is in every Ji .



7. Linear and Affine Combinations of Vectors.

The n-dimensional real vector space En with origin 0 has the scalar
product 〈•, •〉 and induced norm | • |. A vector x ∈ En is a linear
combination if

x = λ1x1 + · · ·+ λkxk

for vectors x1, . . . xk ∈ En and suitable constants λ1, . . . , λk ∈ R.

If such λi exist with λ1 + · · ·+ λk = 1 we say x is an affine combination.
Points x1, . . . xk ∈ En are affinely independent if none of them is an affine
combination of the others, i.e.,

λ1x1 + · · ·+ λkxk = 0 with λ1 + · · ·+ λk = 0

implies λ1 = · · · = λk = 0. This is equivalent to the linear independence
of the k − 1 vectors x2 − x1, . . . , xk − x1.



8. Convex Sets

A set A ⊂ En is called convex if
for any two points x , y ∈ A, the
closed line segment from x to y
is contained in A.

That is, [x , y ] ⊂ A where

[x , y ] = {(1− λ)x + λy : 0 ≤ λ ≤ 1}

So convex sets generalize segments to
higher dimensions.
An example of a convex set is the open
ball B(z , ρ) = {x ∈ En : |z − x | < ρ}.
Another is B(z , ρ) ∪ A where A is an
arbitrary subset of the boundary of
B(z , ρ).

As a consequence of the definition,
intersections of convex sets are convex.
Images and preimages of affine
transformations T (x) = Ax + b of
convex sets are convex too.



9. Convex Hull

For subsets A,B ⊂ En and λ ∈ R we define Minkowski sum/product

A + B = {a + b : a ∈ A, b ∈ B}, λA = {λa : a ∈ A}
For λ, µ > 0 we always have λA + µA ⊃ (λ+ µ)A but equality
λA + µA = (λ+ µ)A holds for all λ, µ > 0 if and only if A is convex.

A vector x ∈ En is a convex combination of the vectors x1, . . . xk ∈ En if
there are numbers λ1, . . . , λk ∈ R such that

x = λ1x1 + · · ·+ λkxk , λi ≥ 0 for all i = 1, . . . , k ,
k∑

i=1

λi = 1.

For A ⊂ En, the convex hull, convA is the set of all convex combinations
of finitely many points in A.

Theorem

If A ⊂ En is convex then A = convA. For arbitrary sets A ⊂ En, convA
is the intersection of all convex subsets of En containing A.
If A,B ⊂ En then conv(A + B) = convA + convB. If A is compact then
so is convA.



10. Caratheodory’s Theorem

Theorem (Caratheodory’s Theorem)

If A ⊂ En and x ∈ convA then x is a convex combination of affinely
independent points in A. In particular, x is a combination of n + 1 or
fewer points of A.

Proof. A point in the convex hull is a convex combination of k ∈ N
points

x =
k∑

i=1

λixi with xi ∈ A, all λi > 0 and
k∑

i=1

λi = 1.

where we may assume k is minimal.
For contradiction, assume x1, . . . , xk are affinely dependent. Then there
would be numbers, not all zero, so that

k∑
i=1

αixi = 0, and
k∑

i=1

αi = 0.



11. Caratheodory’s Theorem Proof

Choose an m such that
λm
αm

> 0 and is as small as possible. (All λi are

already positive and one αi must be positive.) Hence

x =
k∑

i=1

(
λi −

λm
αm

αi

)
xi

in another convex combination for x . All coefficients are non-negative
because either αi is negative, or λi ≥ λm

αm
αi be choice of m.

Also, at least one (the mth) coefficient is zero, contradicting the
minimality of k .
It follows that x1, . . . , xk are affinely independent, which implies
k ≤ n + 1.



12. Convex Hull

Figure: Convex hull convA of a green set A ⊂ E2.

By Caratheodory’s Theorem, for A ⊂ E2 any x ∈ convA is the convex
combination of at most three points, i.e., in a simplex (triangle) with
vertices x1, x2, x3 ∈ A.



13. Radon’s Theorem

Theorem (Radon’s Theorem)

Each finite set of affinely dependent points (in particular each set of at
least n + 2 points) can be expressed as the union of two disjoint sets
whose convex hulls have a common point.

Proof. If x1, . . . , xk are affinely dependent, then there are numbers
α1, . . . , αk ∈ R, not all zero, with∑k

i=1 αixi = 0, and
∑k

i=1 αi = 0.

We may assume, after renumbering that αi > 0 precisely for i = 1, . . . , j
for 0 ≤ j < k (at least one αi 6= 0, but not all > 0 or all < 0). Put

α = α1 + · · ·+ αj = −(αj+1 + · · ·+ αk) > 0.

The weighted average of the positive points is

z =
∑j

i=1
αj

α xi =
∑k

i=j+1

(
−αj

α

)
xi

Now z ∈ conv{x1, . . . , xj} ∩ conv{xj+1, . . . , xk} is the desired point.



14. Johann Radon

Figure: Johann Radon (1887–1956)

Born in Bohemia, Austria, Radon
earned his PhD in Vienna in 1910.
He missed serving in WWI because
of weak eyesight. He held several
positions before returning to the
University of Vienna. Radon
developed this theorem especially to
provide this nice proof of Helly’s
Theorem, published in 1922.

Radon is better known for he
Radon-Nikodym Theorem of real
analysis and the Radon Transform of
X-ray tomography.



15. Helly’s Theorem

Theorem (Helly’s Theorem)

Let A1,A2, . . . ,Ak ⊂ En be convex sets. If any n + 1 of these sets have a
common point, then all sets have a common point.

Proof. We proceed by induction. There is nothing to prove if k < n + 1
and the assertion is trivial if k = n + 1. Thus we may suppose that
k > n + 1 and that the assertion is proved for k − 1 convex sets. Thus
for each i ∈ {1, . . . , k} there is a point

xi ∈ A1 ∩ · · · ∩ Âi ∩ · · ·Ak

where Âi indicates Ai is deleted. The k ≥ n + 2 points x1 . . . , xk are
affinely dependent (there are too many points.) By Radon’s Theorem,
after renumbering, we may infer that there is a point

z ∈ conv{x1, . . . , xj} ∩ conv{xj+1, . . . , xk}
for some j ∈ {1, . . . , k − 1}. Because x1, . . . , xj ∈ Aj+1, . . . ,Ak we have

z ∈ conv{x1, . . . , xj} ⊂ Aj+1 ∩ · · · ∩ Ak .

Similarly z ∈ conv{xj+1, . . . , xk} ⊂ A1 ∩ · · · ∩ Aj .



16. Eduard Helly

Figure: Eduard Helly (1884–1943)

Helly was wounded in WWI and was
prisoner of the Russians. He wrote
about functional analysis from
prison. Though discovered in 1913,
the theorem in these notes wasn’t
published until 1921 when he was
professor in Vienna. He fled the
Nazi’s to the US and worked at
Monmouth College for a while, and
joined the US Signal Corps in 1941
in Chicago, where he died.



17. Picture of Helly’s Theorem in the Plane.

Figure: In a finite collection of planar convex sets, if every three have a point in
common, then all have a pont in common.



18. Helly’s Theorem for Infinitely Many Sets

Helly’s Theorem can be generalized to infinite families of convex sets,
provided some additional compactness is assumed.

Theorem (Helly’s Theorem for Infinitely Many Sets)

Let S be a not necessarily finite family of convex sets in En. Assume
that the intersection of any n + 1 of these sets is compact and nonempty.
Then all sets of S have a point in commom.

For example, to see that compactness is essential, consider the halfspaces

{(x , y) ∈ E2 : y ≥ n}

for n = 1, 2, 3 . . .. Their intersection is empty.



19. Klee’s Theorem

Theorem (Klee’s Theorem)

Let K be a convex body (compact, convex set) and S a family of
compact sets in En. Assume that for any n + 1 sets in S there is a
translation v ∈ En such that K + v covers the n + 1 sets. Then there is a
translation v0 so that K + v0 covers covers all sets of S.

Proof. For any S ∈ S consider the compact set

T (S) = {v ∈ En : v is a translation such that S ⊂ K + v .}

Observe that T (S) is convex: We have to show S ⊂ K + v1 and
S ⊂ K + v2 implies S ⊂ K + λv1 + (1− λ)v2 for all 0 ≤ λ ≤ 1. But a
point s ∈ S may be written s = k1 + v1 = k2 + v2 where k1, k2 ∈ K .
Then s = k + λv1 + (1− λ)v2 where k = λk1 + (1− λ)k2 ∈ K .
It now follows from Helly’s Theorem: the collection S = {T (S) : S ∈ S}
are convex sets with the property that for any n + 1 of them
T (S1), . . .T (Sn+1) there is a translate v such that v ∈ T (Sj) for all
j = 1, . . . , n + 1. Hence there is translation so v0 is in each of S.



20. Picture of Klee’s Theorem

Figure: A translate of K covers S1, S2 and S3. Another covers S4, S5 and S6.
Every three Si ’s are covered by a translate, so all sets are covered by a translate.



21. More Klee’s Theorem

Almost the same argument yields other versions of Klee’s Theorem.

Theorem (More Klee’s Theorem)

Let K be a convex body and S a family of convex bodies in En. Assume
that for any n + 1 sets in S there is a translation v ∈ E2 such that K + v
intersects (is contained in) the n + 1 sets. Then there is a translation v0
so that K + v0 intersects (is contained in) all sets of S.

The argument considers alternate helper sets

T2(S) = {v : v ∈ En is a translation such that S ∩ (K + v) 6= ∅.}
T3(S) = {v : v ∈ En is a translation such that K + v ⊂ S .}



22. Theorem of Rey, Pastór and Santaló

Theorem (Rey, Pastór and Santaló)

Let S be a family of parallel segments in the plane. If any three segments
of S have a common transversal, then all segments of S have a common
transversal.

Proof. For simplicity, we assume that all segments are vertical with
differing x0 coordinates. Thus the segments have coordinates
σ = {(x0, y) : y0 ≤ y ≤ y1}. A transversal y = ax + b intersects σ if

y0 ≤ ax0 + b ≤ y1.

All possible transversals form a strip in the (a, b)-plane bounded by the
lines

b = −x0a + y0 and b = −x0a + y1.

Different segments correspond to different slopes, thus the intersection of
two strips is compact. Helly’s Theorem implies all strips have a common
point which corresponds to a common transversal.



23. Picture of Rey-Pastór-Santló Theorem

Figure: A family of parallel segments and a common transversal.

If every three of a family of parallel segments (such as the red ones) have
a transversal (the red dashed line) then all segments have a common
transversal (the blue dashed line).



24. A Problem of Chebychev on Approximation of Functions

The sup norm defines a distance on functions f , g : [t1, t2]→ R by

‖f − g‖∞ = sup
t0≤t≤t1

|f (t)− g(t)|

If ‖f − g‖∞ ≤ ε then for all t0 ≤ t ≤ t1

f (t)− ε ≤ g(t) ≤ f (t) + ε

The graph of g intersects the segments x0 = t and
y0 = f (t)− ε ≤ y ≤ f (t) + ε = y1. If g is linear, then the Rey, Pastór,
Santaló Theorem applies.

Proposition

A function f : [t1, t1]→ R may be approximated in the sup-norm by a
linear function g to an error of ≤ ε on the interval [t1, t1] if any three
function values f (t ′), f (t ′′) and f (t ′′′) can be so approximated.



25. Picture of Approximation Theorem: Approximate y = f (x) by a Line.

If for every three values t ′, t ′′, t ′′′ ∈ [t1, t2] there there are a, b ∈ R such
that f (t)− ε ≤ at + b ≤ f (t) + ε for each t ∈ {t ′, t ′′, t ′′′} then there are
a, b ∈ R such that f (t)− ε ≤ at + b ≤ f (t) + ε for every t ∈ [t1, t2].
Here we take t1 = −2, t2 = 2, ε = .5 and, for example, the three (red)
vertical segments occur at t ′ = −1.5, t ′′ = −.4 and t ′′′ = 1.6.



26. Jung’s Theorem

The diameter of a compact set K ⊂ En is the maximal distance between
any two of its points

diam(K ) = sup
x ,y∈K

|x − y |.

How big a ball is needed to cover a set with given diameter? The
circumradius is the radius of the smallest ball that contains K .

Theorem (Jung’s Theorem)

A set in En of diameter 1 is contained in a ball or radius rn =
√

n
2(n+1) .

Proof. We show there is a point y such that every point of x ∈ K is
within rn of y , i.e., |x − y | ≤ rn. It suffices to show that all balls x + rnB
intersect, where x ∈ A and B is the closed unit ball. By Helly’s Theorem,
it suffices to show this for any n + 1 balls: given any n + 1 points
x1, . . . , xn+1 ∈ A there exists a point y whose distance from any of the xi
is at most rn.



27. Picture of Jung’s Theorem

Figure: Among all sets A ⊂ E2 with unit diameter, the equilateral triangle T has
largest circumradius: rn > ρ.

Jung’s theorem says that among all sets in En with the unit diameter, the

regular simplex has the largest circumradius rn =
√

n
2(n+1) . In the plane,

the regular simplex is the equilateral triangle T with side length one.



28. Diameter and Jung’s Theorem Proof.

Let F = {x1, . . . , xn+1} ⊂ A be any n + 1 point subset. Let B(c , r) be a
smallest ball containing F . B(c , r) is unique because if F were contained
in two smallest balls, their intersection would contain F and be contained
in an even smaller ball.

We may suppose that the center of this ball is the origin, c = 0. Let
F ′ ⊂ F be the points that intersect the boundary ∂B(0, r). By
renumbering, F ′ = {x1 . . . , xk} where 2 ≤ k ≤ n + 1. The smallest ball
containing F ′ is the same as the smallest containing F . Note |xi | = r for
all i = 1, . . . , k.

We claim that the origin is in the convex hull 0 ∈ conv F ′. If not, there is
a closed halfspace H ⊂ En such that F ′ ⊂ H but 0 /∈ H. But this cannot
be because F ′ ⊂ H ∩ B(0, r) whch is contained in a smaller ball.



29. Diameter and Jung’s Theorem Proof -.

Because 0 ∈ conv F ′ there are numbers λi ≥ 0 such that

0 =
∑k

i=1 λixi , 1 =
∑k

i=1 λi

for each j , 1− λj =
∑

i 6=j λi ≥
k∑

i=1

λi |xi − xj |2

=
k∑

i=1

λi
(
|xi |2 − 2xi • xj + |xj |2

)
= 2r2

∑k
i=1 λi − 2

∑k
i=1 λi (xi • xj)

= 2r2 − 2
(∑k

i=1 λixi

)
• xj = 2r2

Summing over j ,
k −

∑k
j=1 λj = k − 1 ≥ 2kr2.

which implies
n

2(n + 1)
≥ k − 1

2k
≥ r2.



30. Heinrich Jung

Figure: Heinrich Jung (1876–1953)

Jung’s proved the theorem here in
his 1899 Marberg thesis. His
appointment at Kiel was interrupted
because he had to serve in the army.
After WWI, he held positions at
Dorpat and at Halle after 1920. His
main interests were theta functions
and algebraic surfaces.



31. Kirschberger’s Theorem.

We say that two sets A,B ⊂ En can be strongly separated if there is a
hyperplane H = {x ∈ En : u • x = α} for some nonzero u ∈ En and
α ∈ R such that A and B are on opposite sides of H and dist(A,H) and
dist(B,H) are both positive.

For example, if A,B ⊂ En are compact, convex sets such that A ∩ B = ∅
then A and B can be strongly separated.

Theorem

Let A,B ⊂ En be compact sets. For any subset M ⊂ A ∪ B with at most
n + 2 points the sets M ∩A and M ∩B can be strongly separated then A
and B can be strongly separated.



32. Picture of Kirschberger’s Theorem

Figure: A, B are compact plane sets. If any four points in A ∪ B can be
separated by a line H then A and B can be strongly separated by a line.

Kirschbergers’s theorem says that for two compact sets A,B ⊂ En, if any
n + 2 points of A ∪ B can be separated by a hyperplane H, then the sets
can be strongly separated by a hyperplane.



33. Kirschberger’s Theorem Proof.

Proof. Note that a halfspace is given by the set of points x ∈ En such
that

v • x + p ≥ 0

where v 6= 0 is the inward pointing perpendicular vector and p ∈ R.

First we assume A and B are finite sets. For x ∈ En define the sets of
half-spaces that contain x

H±x = {(v , p) ∈ En × R : ±(v • x + p) > 0}.

For cardM ≤ n + 2, by assumption there exists u ∈ En and α ∈ R such
that u • a > α for a ∈ M ∩ A and u • b < α for b ∈ M ∩ B. Writing
p = −α we see that u • a + p > 0 and u • b + p < 0 so that (u, p) ∈ H+

a

for a ∈ M ∩ A and (u, p) ∈ H−b for b ∈ M ∩ B.



34. Kirschberger’s Theorem Proof.

Thus the family {H+
a : a ∈ A} ∪ {H−b : b ∈ B} of finitely many convex

sets in En × R has the property that any n + 2 or fewer of the sets have
nonempty intersection. By Helly’s Theorem, the intersection of all sets of
the family is nonempty. Since each set is open, the finite intersection is
open too, so that we may assume that there is a point (u,−α) in the
intersection that satisfies u 6= 0. Thus for every a ∈ A we have
(v ,−α) ∈ H+

a hence v • a > α and for every b ∈ B, (v ,−α) ∈ H−b hence
v • b < α. Since A ∪ B is finite, they are strongly separated by the
hyperplane x • u = α.

Now let A,B be compact sets satisfying the assumption. By
compactness, separation implies strong separation. Suppose that A and
B cannot be strongly separated. Then the compact sets convA and
convB cannot be strongly separated. Hence there is
z ∈ convA ∩ convB. By Caratheodory’s theorem, z ∈ convA′ ∩ convB ′

where A′ ⊂ A and B ′ ⊂ B are finite sets. Hence A′ and B ′ cannot be
strongly separated, which contradicts the result above.



35. Minkowski’s Theorem.

Figure: x ∈ K , ` is a line through x , |K ∩ `| is the length of the chord and
g(x , `) is the length of the larger subchord cut by x .

Theorem (Minkowski)

Let K ⊂ En be a convex body. Then min
x∈K

max
`3x

g(x , `)

|K ∩ `|
≤ n

n = 1
.



36. Minkowski’s Theorem Proof.

Proof. The theorem asserts that there is a point where all chords are split
in the ratio between 1

n and n. This point turns out to be the centroid.
Define Kx to be the set K shrunk by factor n

n+1 about x . Then the result
follows if ⋂

x∈K
Kx 6= ∅.

To see it is sufficient, suppose that z is a point in the intersection and `
any line through it. Choose x , y ∈ K ∩ ` on either side of z . All Kx and
Ky are dilations and translations of K . So the length of the chords
w = |Kx ∩ `| = |Ky ∩ `| = n

n+1 |K ∩ `| are equal. It remains to show that
the subchords `± of K ∩ ` on either side of z are shorter than w . This
follows if they are covered by Kx ∩ ` and Ky ∩ ` for suitable choices of x
and y . For x equal to z , z ∈ Kx but the end `+ ∩ ∂K may not be in Kx .
By moving x outward, eventually `+ ∩ ∂K ∈ Kx . By hypothesis z ∈ Kx

so `+ ⊂ Kx . Similarly `− ⊂ Ky for suitable y .



37. Minkowski’s Theorem Proof. -

The existence of a common point follows from Helly’s Theorem if we
could show

kx1 ∩ · · · ∩ Kxn+1 6= ∅

for any points x1, · · · , xn+1 ∈ K . The centroid does the trick. Put

z =
1

n + 1

n+1∑
i=1

xi .

z is a convex combination so is in K . To see that it is in Kxj for every j ,

z = xj +
n

n + 1

1

n

n+1∑
i 6=j

(xi − xj)


shows that z is the image under the homothety about xj of the centroid
of the points x1, · · · , x̂j , . . . , xn+1 ∈ K .



38. Minkowski’s Theorem.



Thanks!




