Undergraduate Colloquium:

Helly's Theorem with Applications in Combinatorial Geometry

Andrejs Treibergs
University of Utah

Wednesday, August 31, 2016



2. USAC Lecture on Helly’s Theorem

The URL for these Beamer Slides: “Helly’s Theorem with Applications in
Combinatorial Geometry”

http://www.math.utah.edu/"treiberg/HellySlides.pdf



@ A. D. Alexandrov, Konvexe Polyeder, Akademie Verlag, 1958;
Russian original: 1950.

@ T. Bonnesen & W. Fenchel, Theorie der Konvexen Kérper, Chelsea
Publ., 1977; orig. pub. Springer, 1934.

H. Guggenheimer, Applicable Geometry, Krieger Publ. Co., 1977.

H. Hadwiger, Vorlesungen iiber Inhalt, Oberfliche und Isoperimetrie,
Springer, 1957.

@ R. T. Rockafeller, Convex Analysis, Princeton University Press, 1970.

@ R. Schneider, Convex Bodies: the Brunn-Minkowski Theory,
Cambridge University Press, 1993.



@ One-Dimensional Helly's Theorem
@ Convex Sets, Convex Combinations, Convex Hull

e Caratheodory’'s Theorem.
e Radon’s Theorem

@ Helly's Theorem
@ Applications of Helly’s Theorem
e Klee's Theorems on Covering by Translates
Rey-Pastér-Santalé Theorem on Common Transversal of Segments
Helly's Theorem on Approximation of Functions
Jung’s Estimate of the Circumradius in Terms of Diameter
Kirschberger's Theorem on Separating Sets
Minkowski's Theorem on Centering Chords



5. One Dimensional Helly's Theorem

Intervals are real sets like [1,2], [1,2), (—o0, 3], (5,00), (—o0, c0).

Baby Helly's Question. If J;, J» and J3 are intervals such that any two
have a point in common, do all three have a point in common?

Answer: YES! We've assumed any two have a point in common so take
a1p € 1N, a3 € J1 N J3 and ansz € Jo N J3. Sort these numbers, say,

a13 < a1 < (23.

aq2 is in both J; and . Isit in J37 Now 33 € J3 so ayp is greater than
a point in J3. Also aip3 € J3 so as is less than a point in J3. Hence s
is between two points of J3, which is an interval, so a1y € J3 as well. [



6. One Dimensional Helly’s Theorem

The one dimensional Helly’s Theorem is the same assertion for arbitrary
many intervals. The proof is similar too.

Theorem (One-Dimensional Helly's Theorem)

Suppose J; CR fori =1,...,k is a collection of intervals such that no
two are disjoint. Then there is a point common to all k intervals.

Let ajj = aji be any point in J; N J;. Consider

B1 = max min aj; B2 = min max aj
i=1,...,k j=1,...,k i=1,...,k j=1,...k

)

First, 81 < B2. If iy and iy are indices such that 31 = minj—; _, «;; and
Bo = max;j—=1,... k Qj;j it follows that 57 < Ay = Qi < Bo.

Second, any z € [31, 32] is in every J;. As z < maxj—1__x o € Jj for any
i, it is less than an element of every J;. Similarly z > min;—; _,«j € J;
for every i, it is also greater than a point of J;. Thus z is in every J;. [



7. Linear and Affine Combinations of Vectors.

The n-dimensional real vector space E” with origin 0 has the scalar
product (e, e) and induced norm | e |. A vector x € E" is a linear
combination if

X = A1x1 + -+ AeX

for vectors xi,...x,x € E" and suitable constants A\1,..., A\x € R.

If such A; exist with Ay +--- 4+ A\ = 1 we say x is an affine combination.
Points x1,...x, € E" are affinely independent if none of them is an affine
combination of the others, i.e.,

Mx1+ -+ Mxe=0 with A4+ A =0

implies A\; = --- = A, = 0. This is equivalent to the linear independence
of the k — 1 vectors xo — xq, ..., Xk — X1.



That is, [x,y] C A where
Xyl ={(1=A)x+Ay:0< A <1}

So convex sets generalize segments to
higher dimensions.

An example of a convex set is the open
ball B(z,p) ={x € E" : |z — x| < p}.
Another is B(z, p) U A where A is an
arbitrary subset of the boundary of
B(z, p).

As a consequence of the definition,
A set A C E" is called convex if intersections of convex sets are convex.
for any two points x,y € A, the Images and preimages of affine

closed line segment from x to y  transformations T(x) = Ax + b of
is contained in A. convex sets are convex too.



9. Convex Hull

For subsets A, B C E" and A € R we define Minkowski sum /product
A+B={a+b:ac A, be B}, M={)la:ac A}

For A, u > 0 we always have AA + uA D (XA + p)A but equality
A + pA = (A + p)A holds for all A, > 0 if and only if A is convex.

A vector x € E” is a convex combination of the vectors xq,...x, € E" if
there are numbers A, ..., Ax € R such that

k
X = A1x1 + -+ AeXk, Ai>0foralli=1,...,k, Z)\;zl.
i=1

For A C E", the convex hull, conv A is the set of all convex combinations
of finitely many points in A.

If AC E" is convex then A = conv A. For arbitrary sets A C E", conv A
is the intersection of all convex subsets of E" containing A.
If A,B C E" then conv(A + B) = conv A+ conv B. If A is compact then

so is conv A.




10. Caratheodory’'s Theorem

Theorem (Caratheodory's Theorem)

If AC E" and x € conv A then x is a convex combination of affinely
independent points in A. In particular, x is a combination of n+ 1 or
fewer points of A.

Proof. A point in the convex hull is a convex combination of k € N
points

k k
x=Y Xixp withx;€Aallx;>0and > N=1
i=1 i=1
where we may assume k is minimal.

For contradiction, assume xi, ..., xx are affinely dependent. Then there
would be numbers, not all zero, so that

Z ajx; =0, and Za,- =0.



11. Caratheodory’s Theorem Proof

A
Choose an m such that =™ > 0 and is as small as possible. (All \; are
o

m
already positive and one «; must be positive.) Hence

k
X = Z </\,'— 2::04;) Xj

i=1

in another convex combination for x. All coefficients are non-negative
because either «; is negative, or \; > ::\ﬁo‘i be choice of m.

Also, at least one (the mth) coefficient is zero, contradicting the
minimality of k.

It follows that xi, ..., xx are affinely independent, which implies
k<n+1. O



12. Convex Hull

Figure: Convex hull conv A of a green set A C E2.

By Caratheodory's Theorem, for A C E2 any x € conv A is the convex
combination of at most three points, i.e., in a simplex (triangle) with
vertices xi, x2, x3 € A.



13. Radon’'s Theorem

Theorem (Radon’s Theorem)

Each finite set of affinely dependent points (in particular each set of at
least n + 2 points) can be expressed as the union of two disjoint sets
whose convex hulls have a common point.

Proof. If x1,...,x, are affinely dependent, then there are numbers
ai, .. .,a, € R, not all zero, with

k k
Zi:l QiXj = 0, and Zi:l o = 0.

We may assume, after renumbering that a;; > 0 precisely for i =1,...,j
for 0 < j < k (at least one aj # 0, but not all > 0 or all < 0). Put

a:a1+---—|—aj:—(aj+1+~-—|—ak)>0.
The weighted average of the positive points is
zZ=) i1 aXi= Zi:j—H (_EJ) Xi

Now z € conv{xi,...,xj} Nconv{xji1,..., Xk} is the desired point.  []



14. Johann Radon

Born in Bohemia, Austria, Radon
earned his PhD in Vienna in 1910.
He missed serving in WWI because
of weak eyesight. He held several
positions before returning to the
University of Vienna. Radon
developed this theorem especially to
provide this nice proof of Helly's
Theorem, published in 1922.

Radon is better known for he
TS o Radon-Nikodym Theorem of real
analysis and the Radon Transform of
Figure: Johann Radon (1887-1956) X-ray tomography.



15. Helly's Theorem

Theorem (Helly's Theorem)

Let A1, A, ..., Ax CEE" be convex sets. If any n+ 1 of these sets have a
common point, then all sets have a common point.

Proof. We proceed by induction. There is nothing to prove if k < n+1
and the assertion is trivial if k = n+4 1. Thus we may suppose that

k > n+ 1 and that the assertion is proved for k — 1 convex sets. Thus
for each i € {1,..., k} there is a point

X,'EAlﬂ-“mA\,'ﬂ-“Ak

where 2,- indicates A; is deleted. The kK > n+ 2 points xy ..., xx are
affinely dependent (there are too many points.) By Radon’s Theorem,
after renumbering, we may infer that there is a point

z € conv{xy,...,xj} Nconv{xjt1,..., Xk}

for some j € {1,...,k —1}. Because xi,...,X; € Aj;1,...,Ax we have
z € convi{xi,...,xj} C A1 N---NAg

Similarly z € conv{xi11,...,xc} CA1N---NA,. O



16. Eduard Helly

Helly was wounded in WWI and was
prisoner of the Russians. He wrote
about functional analysis from
prison. Though discovered in 1913,
the theorem in these notes wasn't
published until 1921 when he was
professor in Vienna. He fled the
Nazi's to the US and worked at
Monmouth College for a while, and
joined the US Signal Corps in 1941
in Chicago, where he died.

Figure: Eduard Helly (1884-1943)



17. Picture of Helly's Theorem in the Plane.

Figure: In a finite collection of planar convex sets, if every three have a point in
common, then all have a pont in common.



18. Helly's Theorem for Infinitely Many Sets

Helly's Theorem can be generalized to infinite families of convex sets,
provided some additional compactness is assumed.

Theorem (Helly's Theorem for Infinitely Many Sets)

Let S be a not necessarily finite family of convex sets in E". Assume
that the intersection of any n+ 1 of these sets is compact and nonempty.
Then all sets of S have a point in commom.

For example, to see that compactness is essential, consider the halfspaces
{(x,y) €E2:y > n}

for n=1,2,3.... Their intersection is empty.



19. Klee's Theorem

Theorem (Klee's Theorem)

Let K be a convex body (compact, convex set) and S a family of
compact sets in E". Assume that for any n+ 1 sets in S there is a
translation v € K" such that K 4+ v covers the n+ 1 sets. Then there is a
translation vy so that K + vg covers covers all sets of S.

Proof. For any § € S consider the compact set
T(S)={v € E": vis a translation such that S C K + v.}

Observe that T(S) is convex: We have to show S C K + v; and
SCK+wimpliesSCK+Avi+(1—ANwaforall0 <A <1 Buta
point s € S may be written s = k; + vi = ko + v» where ki, ks € K.
Then s = k+ Avi + (1 — A)va where k = k1 + (1 — Nk € K.

It now follows from Helly's Theorem: the collection S = {T(S) : S € S}
are convex sets with the property that for any n+ 1 of them

T(51),... T(Sn41) there is a translate v such that v € T(S;) for all
j=1,...,n4+ 1. Hence there is translation so vy is in each of S. O



20. Picture of Klee's Theorem

K+v2

Figure: A translate of K covers S, S; and S3. Another covers Sy, Ss and Sg.
Every three S5;'s are covered by a translate, so all sets are covered by a translate.



21. More Klee's Theorem

Almost the same argument yields other versions of Klee's Theorem.

Theorem (More Klee's Theorem)

Let K be a convex body and S a family of convex bodies in E". Assume
that for any n+ 1 sets in S there is a translation v € E? such that K + v
intersects (is contained in) the n+ 1 sets. Then there is a translation v
so that K + vy intersects (is contained in) all sets of S.

The argument considers alternate helper sets

T2(S) = {v:v € E"is a translation such that SN (K + v) # 0.}
T3(S) = {v: v € E" is a translation such that K +v C S.}



22. Theorem of Rey, Pastér and Santalé

Theorem (Rey, Pastér and Santald)

Let S be a family of parallel segments in the plane. If any three segments
of § have a common transversal, then all segments of S have a common
transversal.

Proof. For simplicity, we assume that all segments are vertical with
differing xp coordinates. Thus the segments have coordinates
o={(x0,y): ¥ <y <y} Atransversal y = ax + b intersects o if

Yo <axo+ b <y

All possible transversals form a strip in the (a, b)-plane bounded by the
lines
b= —xpa+ yo and b= —xpa+ y1.

Different segments correspond to different slopes, thus the intersection of
two strips is compact. Helly's Theorem implies all strips have a common
point which corresponds to a common transversal. ]



23. Picture of Rey-Pastér-Santlé Theorem

Figure: A family of parallel segments and a common transversal.

If every three of a family of parallel segments (such as the red ones) have
a transversal (the red dashed line) then all segments have a common
transversal (the blue dashed line).



24. A Problem of Chebychev on Approximation of Functions

The sup norm defines a distance on functions f, g : [t1, t2] — R by

If —gllo = sup [F(t) — g(t)]

to<t<ty

If ||f —glloo < ethenforall tp <t <t
f(t) —e < g(t) <f(t) +e

The graph of g intersects the segments xo = t and
yo=f(t) —e <y < f(t)+ €= y. If gis linear, then the Rey, Pastdr,
Santalé Theorem applies.

Proposition

A function f : [t1, t1]] — R may be approximated in the sup-norm by a
linear function g to an error of < € on the interval [ty, t1] if any three
function values f(t"), f(t") and f(t"") can be so approximated.




25. Picture of Approximation Theorem: Approximate y = f(x) by a Line.
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If for every three values t',t", t" € [t1, tp] there there are a, b € R such
that f(t) —e < at+ b < f(t) + ¢ for each t € {t’, t",t""} then there are
a,b € R such that f(t) —e < at + b < f(t) + € for every t € [t, to].
Here we take t; = —2, to =2, ¢ = .5 and, for example, the three (red)
vertical segments occur at t' = —1.5, t/ = —.4 and t"/ = 1.6.



26. Jung's Theorem

The diameter of a compact set K C E” is the maximal distance between
any two of its points

diam(K) = sup |x —y]|.
xyeK

How big a ball is needed to cover a set with given diameter? The
circumradius is the radius of the smallest ball that contains K.

Theorem (Jung’'s Theorem)

A set in E" of diameter 1 is contained in a ball or radius r, = 2('77:‘1)

Proof. We show there is a point y such that every point of x € K is
within r, of y, i.e.,, |[x — y| < r,. It suffices to show that all balls x + r,B
intersect, where x € A and B is the closed unit ball. By Helly's Theorem,
it suffices to show this for any n+ 1 balls: given any n+ 1 points

X1,...,Xn+1 € A there exists a point y whose distance from any of the x;
is at most r,.




27. Picture of Jung's Theorem

Figure: Among all sets A C [E? with unit diameter, the equilateral triangle T has
largest circumradius: r, > p.

Jung's theorem says that among all sets in E” with the unit diameter, the
regular simplex has the largest circumradius r, = 2(n7:—1) In the plane,

the regular simplex is the equilateral triangle T with side length one.



28. Diameter and Jung's Theorem Proof.

Let F = {x1,...,%xn+1} C A be any n+ 1 point subset. Let B(c,r) be a
smallest ball containing F. B(c, r) is unique because if F were contained
in two smallest balls, their intersection would contain F and be contained
in an even smaller ball.

We may suppose that the center of this ball is the origin, ¢ = 0. Let

F" C F be the points that intersect the boundary 9B(0, r). By
renumbering, F' = {x1...,xx} where 2 < k < n+ 1. The smallest ball
containing F’ is the same as the smallest containing F. Note |x;| = r for
alli=1,... k.

We claim that the grigin is in the convex hﬂl 0e con\LF’. If not, there is
a closed halfspace H C E" such that F" C H but 0 ¢ H. But this cannot
be because F' C H N B(0, r) whch is contained in a smaller ball.




29. Diameter and Jung's Theorem Proof -.

Because 0 € conv F’ there are numbers \; > 0 such that

0= 3151 Aixi, 1=K\
k

for each j, l—Aj:Z,-#)\iZZ)\i‘Xi_Xj’z
i=1

k
= >N (P = 2x 0 x5+ [x?)
i=1
=22 N -2 il * X))
=2r2 -2 (Zf'(:l )\,-X,-) o X = 2r2
Summing over j,
k=Yl A =k—12> 2k

which implies




30. Heinrich Jung

Jung's proved the theorem here in
his 1899 Marberg thesis. His
appointment at Kiel was interrupted
because he had to serve in the army.
After WWI, he held positions at
Dorpat and at Halle after 1920. His
main interests were theta functions
and algebraic surfaces.

Figure: Heinrich Jung (1876-1953)



31. Kirschberger's Theorem.

We say that two sets A, B C E” can be strongly separated if there is a
hyperplane H = {x € E" : u e x = o} for some nonzero u € E" and

a € R such that A and B are on opposite sides of H and dist(A, H) and
dist(B, H) are both positive.

For example, if A, B C E" are compact, convex sets such that AN B = ()
then A and B can be strongly separated.

Let A, B C E" be compact sets. For any subset M C AU B with at most
n+ 2 points the sets M N A and M N B can be strongly separated then A
and B can be strongly separated.




32. Picture of Kirschberger's Theorem

° H

Figure: A, B are compact plane sets. If any four points in AU B can be
separated by a line H then A and B can be strongly separated by a line.

Kirschbergers's theorem says that for two compact sets A, B C E”, if any
n + 2 points of AU B can be separated by a hyperplane H, then the sets
can be strongly separated by a hyperplane.



33. Kirschberger's Theorem Proof.

Proof. Note that a halfspace is given by the set of points x € E” such
that
vex+p>0

where v = 0 is the inward pointing perpendicular vector and p € R.

First we assume A and B are finite sets. For x € E” define the sets of
half-spaces that contain x

HE ={(v,p) €cE" x R: £(vex+p) >0}

For card M < n+ 2, by assumption there exists u € E"” and a € R such
that uea>aforaec MNAand ueb < afor be MN B. Writing
p= —a we see that uea+p>0and ue b+ p <0 so that (u,p) € H
forae MNAand (u,p) € H forbe MNB.



34. Kirschberger's Theorem Proof.

Thus the family {H; : a € A} U{H, : b € B} of finitely many convex
sets in E” x R has the property that any n+ 2 or fewer of the sets have
nonempty intersection. By Helly's Theorem, the intersection of all sets of
the family is nonempty. Since each set is open, the finite intersection is
open too, so that we may assume that there is a point (u, —«) in the
intersection that satisfies u # 0. Thus for every a € A we have

(v,—a) € Hf hence vea> a and for every b € B, (v, —a) € H, hence
veb < a. Since AU B is finite, they are strongly separated by the
hyperplane x e u = «.

Now let A, B be compact sets satisfying the assumption. By
compactness, separation implies strong separation. Suppose that A and
B cannot be strongly separated. Then the compact sets conv A and

conv B cannot be strongly separated. Hence there is

z € conv AN conv B. By Caratheodory’s theorem, z € conv A’ N conv B’
where A C A and B’ C B are finite sets. Hence A’ and B’ cannot be
strongly separated, which contradicts the result above. O



35. Minkowski's Theorem.

Figure: x € K, £ is a line through x, |K N ¢| is the length of the chord and
g(x,£) is the length of the larger subchord cut by x.

Theorem (Minkowski)

Let K C E" be a convex body. Then Q';Q r?aa; K] Sn=1




36. Minkowski's Theorem Proof.

Proof. The theorem asserts that there is a point where all chords are split
in the ratio between % and n. This point turns out to be the centroid.
Define K to be the set K shrunk by factor —7= about x. Then the result

n+
follows if
) K # 0.

xeK

To see it is sufficient, suppose that z is a point in the intersection and /
any line through it. Choose x,y € K N ¥ on either side of z. All K, and
K, are dilations and translations of K. So the length of the chords

w = |Kx Nl = |K, N¢| = ;75|K N L are equal. It remains to show that
the subchords ¢+ of K N ¥ on either side of z are shorter than w. This
follows if they are covered by K, N ¢ and K, N ¢ for suitable choices of x
and y. For x equal to z, z € K, but the end /. N 0K may not be in K.
By moving x outward, eventually /1 NJK € K. By hypothesis z € K,
so {4 C K. Similarly /_ C K, for suitable y.



37. Minkowski's Theorem Proof. -

The existence of a common point follows from Helly’s Theorem if we
could show

kg N N Ky #0

for any points xi,- -+, xp,4+1 € K. The centroid does the trick. Put
TR,
z=- 1 ;x,-.
z is a convex combination so is in K. To see that it is in K, for every j,
" 1
Z=Xit n;(x,-—xj-)

shows that z is the image under the homothety about x; of the centroid
of the points x1,- -+, Xj, ..., Xs41 € K. O



38. Minkowski's Theorem.



Thants!






