Math 1320-6 Lab 5

T.A.: Kyle Steffen

25 February 2016

Name: \qquad
uNID: \qquad

Instructions and due date:

- Due: 3 March 2016 at the start of class.
- For full credit: Show all of your work, and simplify your final answers.
- Work together! However, your work should be your own (not copied from a group member).

1. Give an example of a power series with the following radii of convergence: (a) $R=0$; (b) $R=3$; (c) $R=\infty$. Justify your answer.
(a) $R=0$
(b) $R=3$
(c) $R=\infty$
2. Consider the function $f(t)=(\arctan t) / t$.
(a) Compute a power series expansion of $\mathcal{I}(x)=\int_{0}^{x} f(t) d t$. Write your answer in the form $\sum_{k=1}^{\infty} a_{k} x^{2 k-1}$ for an appropriate choice of a_{k}. Compute the radius of convergence of the resulting power series expansion.
(b) Let $\mathcal{I}_{n}(x)=\sum_{k=1}^{n} a_{k} x^{2 k-1}$ be the n-th partial sum of the series in part (a) (i.e. it consists of the first n terms of the power series). Define E_{n} to be the error of approximating $\mathcal{I}(1)$ by $\mathcal{I}_{n}(1): E_{n}=\left|\mathcal{I}(1)-\mathcal{I}_{n}(1)\right|$.
What is the minimum number of terms N required so that $E_{N}<0.01$? What if we require $E_{N}<0.001 ? E_{N}<0.000001=10^{-6}$? (Hint: Use the Alternating Series Estimation Theorem. Also: All three of your answers should be positive integers.)
3. Consider the following graph (in blue) of a function $f(x)$. Answer the following questions, and justify your answer with a short sentence or two.

(a) Is $\frac{3}{4}-x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}-\frac{5}{8} x^{4}+\cdots$ the Maclaurin series of $f(x)$?
(b) Is $-\frac{5}{7}+\frac{5}{9}(x+1)+\frac{5}{4}(x+1)^{2}+\frac{5}{12}(x+1)^{3}-\frac{1}{7}(x+1)^{4}+\cdots$ the Taylor series of $f(x)$ at the point $x=-1$?
(c) Is $\frac{8}{5}+\frac{8}{9}(x-3)+\frac{3}{18}(x-3)^{2}+\frac{15}{31}(x-3)^{3}-\frac{3}{11}(x-3)^{4}+\cdots$ the Taylor series of $f(x)$ at the point $x=3$?
4. The following limits represent some derivative of $f(x)$. Use Taylor series to determine which derivative it is.
(a) $\lim _{h \rightarrow 0} \frac{1}{h^{2}}[f(x+h)+f(x-h)-2 f(x)]$
(b) $\lim _{h \rightarrow 0} \frac{1}{2 h}[f(x+h)-f(x-h)]$
