| 1110011 1020 0 1100 0 | Math | 1320-6 | Lab | 5 |
|-----------------------|------|--------|-----|---|
|-----------------------|------|--------|-----|---|

Name: \_\_\_\_\_

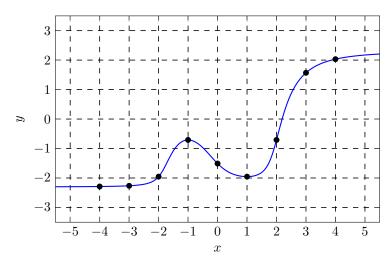
T.A.: Kyle Steffen 25 February 2016

uNID: \_\_\_\_

## <u>Instructions and due date:</u>

- **Due:** 3 March 2016 at the start of class.
- For full credit: Show all of your work, and simplify your final answers.
- Work together! However, your work should be your own (not copied from a group member).
- 1. Give an example of a power series with the following radii of convergence: (a) R=0; (b) R=3; (c)  $R=\infty$ . Justify your answer.
  - (a) R = 0

(b) R = 3


(c)  $R = \infty$ 

- 2. Consider the function  $f(t) = (\arctan t)/t$ .
  - (a) Compute a power series expansion of  $\mathcal{I}(x) = \int_0^x f(t)dt$ . Write your answer in the form  $\sum_{k=1}^\infty a_k x^{2k-1}$  for an appropriate choice of  $a_k$ . Compute the radius of convergence of the resulting power series expansion.

(b) Let  $\mathcal{I}_n(x) = \sum_{k=1}^n a_k x^{2k-1}$  be the *n*-th partial sum of the series in part (a) (i.e. it consists of the first *n* terms of the power series). Define  $E_n$  to be the error of approximating  $\mathcal{I}(1)$  by  $\mathcal{I}_n(1)$ :  $E_n = |\mathcal{I}(1) - \mathcal{I}_n(1)|$ .

What is the minimum number of terms N required so that  $E_N < 0.01$ ? What if we require  $E_N < 0.001$ ?  $E_N < 0.000001 = 10^{-6}$ ? (Hint: Use the Alternating Series Estimation Theorem. Also: All three of your answers should be positive integers.)

3. Consider the following graph (in blue) of a function f(x). Answer the following questions, and justify your answer with a short sentence or two.



(a) Is  $\frac{3}{4} - x + \frac{1}{2}x^2 + \frac{1}{2}x^3 - \frac{5}{8}x^4 + \cdots$  the Maclaurin series of f(x)?

(b) Is  $-\frac{5}{7} + \frac{5}{9}(x+1) + \frac{5}{4}(x+1)^2 + \frac{5}{12}(x+1)^3 - \frac{1}{7}(x+1)^4 + \cdots$  the Taylor series of f(x) at the point x = -1?

(c) Is  $\frac{8}{5} + \frac{8}{9}(x-3) + \frac{3}{18}(x-3)^2 + \frac{15}{31}(x-3)^3 - \frac{3}{11}(x-3)^4 + \cdots$  the Taylor series of f(x) at the point x = 3?

4. The following limits represent some derivative of f(x). Use Taylor series to determine which derivative it is.

(a) 
$$\lim_{h\to 0} \frac{1}{h^2} [f(x+h) + f(x-h) - 2f(x)]$$

(b)  $\lim_{h\to 0} \frac{1}{2h} [f(x+h) - f(x-h)]$