Math 1320 - Lab 1

T.A.: Kyle R Steffen 14 January 2016

Instructions:

- Draw sketches to improve your understanding of each exercise!
- For full credit, simplify your final answers.
- Work together! However your work should be your own (not copied from a group member).

Name:	Student ID:

- 1. Find the volume of the solid of revolution formed by rotating the finite region bounded by the graphs of y = x and $y = x^4$ around the following two lines.
 - (a) The x-axis

(b) The line x = -1

2.	Find the volume of the solid of revolution obtained by rotating the region	bounded by
	the curves $y = (x - 1)^2$ and $x = y^2 + 1$ around the line $y = -1$.	

3. A machinist has a hemisphere made out of some alloy metal, with radius 1 cm. They wish to have a volume of exactly $2\,\mathrm{cm}^3$ of this metal. What size of cylindrical hole should they bore through the center of the hemisphere to achieve this volume? That is: What should the radius of the cylindrical hole be?

- 4. In this exercise, we will find the volume of a pyramid of height h whose base is an equilateral triangle with side length L.
 - (a) As in lecture, we can compute the volume of this object as follows:

$$V = \int_0^h A(y) \, \mathrm{d}y,$$

where A(y) is the cross sectional area (in red) in the following figure:

Thus, we must determine A(y). As a first step, consider the cross section shown with width s. What is the area of this cross section in terms of s? (*Hint: It is also an equilateral triangle.*)

(b)	Now that we have the area for a particular width s , relate s and y to L and h . (Hintelligeness similar triangles.)
(c)	From this, obtain an explicit expression for $A(y)$, involving only L , h , and y , but not s .
(d)	Compute the volume of the pyramid.