Instructions: You have until the end of class to complete this quiz. This quiz is two pages, and worth 20 points. Make sure to write your name at the top of the quiz. Show all of your work for full credit!

1. (10 points) Compute the order of $[18]$ in the group $\mathbb{Z} / 21 \mathbb{Z}$. (Here, as usual, we're considering $\mathbb{Z} / 21 \mathbb{Z}$ as a group under addition)
By a hemewenk problem (Tb on HW 5),

$$
o(1187)=\frac{21}{\operatorname{gcd}(18,21)}=\frac{21}{3}=7
$$

ALTERNATIVELY:
we can just add $\{18\}$ to itself until we get [0]:

$$
\begin{aligned}
& 1 \cdot[18]=118] \\
& 2 \cdot[18]=[15] \\
& 3 \cdot[187=[12] \\
& 4 \cdot 118]=[9]
\end{aligned}
$$

$$
5 \cdot[18]=[6]
$$

$$
6 \cdot[18]=[3]
$$

$7 \cdot[18]=[0] \longrightarrow$ So $0([187)=7$,
2. (10 points) Prove that the set of linear polynomials with integer coefficients, i.e. $\{a x+b \mid a, b \in \mathbb{Z}\}$, forms an abelian group under the usual addition rule:

$$
(a x+b)+(c x+d)=(a+c) x+(b+d)
$$

- If $a, b, c, d \in 2$ Hen $a+c \in \mathbb{Z}$ and $b+d \in \mathbb{Z}$, so this is a binary operation.
- Id element is $0=0 x+0$; since

$$
(0 x+0)+(a x+b)=(a x+b)+(0 x+0)=a x+b
$$

for all $a, b \in \mathbb{Z}$

- Associativity: $\forall a, b, c, d, e, f \in \mathbb{Z}$:

$$
\begin{aligned}
& {[(a x+b)+(c x+d)]+(e x+f) }=[(a+c) x+(b+d)]+(e x+f) \\
&=[(a+c)+e) x+[(b+d)+f) \\
&=[a+(c+e)] x+[b+(d+f)] \\
& G=(a x+b)+(c+e) x+(d+f)=(a x+b)+[(c x+d)+(e x+f)]
\end{aligned}
$$

a Immerses: the inverse of $a x+b$ is $(-a) x+(-b)$:

$$
a x+b+[-a x-b]=(-a x-b)+[a x+b]=0
$$

If $a, b \in \mathbb{Z}$, then $-a,-b \in \mathbb{Z}$, se $(-a) x+(-b)$ is in sur set.

- Abelian prepenty: $\forall a, b, c, d e \mathbb{Z}$.

$$
(a x+b)+(c x+d)=(a+c) x+(b+d)=(c+a) x+(d+b)=(c x+d)+(a x+b)
$$

