- 4. (20 points) True or false: print a T or an F on each line! Let G be a finite group and let k be a field. Also, 163 and 89 are indeed prime numbers.
 - (a) Any subgroup of a non-abelian group is non-abelian
 - (b) Any subgroup of an abelian group is abelian
 - (c) $\boxed{}$ [3] is a zero-divisor in $\mathbb{Z}/6\mathbb{Z}$
 - (d) It's possible for a primitive 10^{th} root of unity in k to be a 5^{th} root of unity in
 - (e) $\frac{1}{1}$ It's possible for a 10th root of unity in k to be a primitive 5th root of unity in
 - (f) $\mathbb{Z}/9\mathbb{Z}$ is a field under the usual addition and multiplication operations.
 - (g) E It's possible for a group of order 10 to have a subgroup of order 3
 - (h) It's possible for a group of order 10 to have a subgroup of order 5

 - (i) E -1 is a square modulo 163 (G) = 3 red 4 (j) = 2 is a square modulo 89 = 1 red 8