Math 4400 Midterm 2

July 21, 2017

Name:

You may assume, without proof:

- If $a, b \in \mathbb{N}$ and $a b=1$, then $a=1$ and $b=1$
- If $a \mid b$ and $b \mid c$, then $a \mid c$
- If $a c \mid b c$ and $c \neq 0$, then $a \mid b$.

Question	Points	Score
1	10	
2	15	
3	10	
4	20	
5	15	
6	20	
7	10	
Total:	100	

1. (a) (5 points) Compute the order of [22] in $\mathbb{Z} / 99 \mathbb{Z}$.

$$
\begin{gathered}
o(22)=\frac{99}{g d(99,22)}=\frac{99}{11}=9 \\
99=3^{2} \cdot 11, \\
22=2 \cdot 11, \text { so god }=11 .
\end{gathered}
$$

(b) (5 points) Compute the order of [21] in $\mathbb{Z} / 99 \mathbb{Z}$.

$$
\begin{aligned}
21 & =7 \cdot 3,99 \\
c & =3^{2} \cdot 11 \quad \Rightarrow \mathrm{gcd}=3 \\
21)=\frac{99}{3} & =33
\end{aligned}
$$

2. (15 points) Solve the congruence, $x^{17} \equiv 18 \bmod 77$ (no need to simplify your answer

$$
77=7.11 \Rightarrow \varphi(77)=6 \cdot 10=60
$$

Check: $\operatorname{gcd}(17,60)=1$,

$$
\operatorname{gcd}(18,7))=1
$$

Thus, $x=18^{4}$, where $174=1 \bmod 60$. $u=$? Euclidean also:

$$
\begin{aligned}
& 60=3.17+9, \quad 17=1.9+8, \quad 9=1.8+1 \\
\Rightarrow & 9-8=1 \Rightarrow 2.9-17=1, \\
\Rightarrow & 2.60-7.17=1 \Rightarrow x \equiv 18^{-7} \equiv 18^{53} \operatorname{med} 77
\end{aligned}
$$

3. (10 points) Let $R=\mathbb{Z}[\sqrt{7}] / 11 \mathbb{Z}[\sqrt{7}]$. Compute the inverse of $3+2 \sqrt{7}$ in R.

$$
\begin{aligned}
& N(3+2 \sqrt{7})=9-4.7=-19 \equiv 3 \\
& 3^{-1} \text { mod } 11 \text { ? Easy enough to do by } \\
& \text { bute force: } 3 \cdot 4=12 \equiv 1 \mathrm{rod} \mathrm{l} 11 \\
& \Rightarrow(3+2 \sqrt{7})=(3-2 \sqrt{7}) \cdot 4 \equiv 12-8 \sqrt{7} \\
& \equiv 1+3 \sqrt{7}
\end{aligned}
$$

4. (20 points) True or false: print a T or an F on each line! Let G be a finite group and let k be a field. Also, 163 and 89 are indeed prime numbers.
(a) __ Any subgroup of a non-abelian group is non-abelian
(b) __ Any subgroup of an abelian group is abelian
(c) _ [3] is a zero-divisor in $\mathbb{Z} / 6 \mathbb{Z}$
(d) $\frac{\text { _ }}{k \text {. }}$ It's possible for a primitive $10^{\text {th }}$ root of unity in k to be a $5^{\text {th }}$ root of unity in

(f) _ $\mathbb{Z} / 9 \mathbb{Z}$ is a field under the usual addition and multiplication operations.
(g) __ It's possible for a group of order 10 to have a subgroup of order 3
(h) _ It's possible for a group of order 10 to have a subgroup of order 5
(i) __ -1 is a square modulo 163
(j) __ 2 is a square modulo 89
5. (15 points) Let G be a group, and let $g \in G$ be an element of order n. Prove that the elements $g, g^{2}, g^{3}, \ldots, g^{n}$ are all distinct.
Suppose $g^{j}=g^{j}$ for some $1 \leq i<j \leqslant n$.
Then $e=g^{j-i}$. But
$0<j-i \leqslant n-i<n \quad$ (in particular,

$$
0<j-i<n)
$$

This contradicts the assumption that $o(g)=n \quad($ contradicts the minimality of n)
6. (20 points) Prove that there are infinitely many primes congruent to 3 modulo 4. (Hint: suppose there are only finitely many such primes and let $S=\left\{p_{1}, \ldots, p_{n}\right\}$ of all primes congruent to 3 modulo 4 , except for 3 itself. Prove that $4 p_{1} p_{2} \cdots p_{n}+3$ is divisible by a prime that's congruent to 3 modulo 4 to get a contradiction.)
By uniqueness \wedge of factorization, \exists primes, $q_{1}, \rightarrow q_{r}$ sit. $m=q_{1} q_{2} \cdots q_{r}$. Note: m is odd, so $q_{i} \neq 2$ for all i. Thus $g_{i=1} \bmod 4$ or $q_{i} \equiv 3 \bmod 4$.
If $g_{i=1} \bmod 4$ for all i, then $m \equiv q_{1} \cdots q_{n} \equiv 10 / \cdots 1 \equiv 1 \bmod 4$. Bat $4\left(m-3\right.$, so $m \equiv 3 \bmod 4$. Thus z_{i} sit. $q_{i} \equiv 3 \bmod 4$. Also, $\forall p \in S$, pYm; otherwise $p\left(a-4 p_{1} \cdots p_{n}\right)$. But $p \times 3$.
$\Rightarrow q_{i} \notin S$; note that $3 X \mathrm{~m}$, since otherwise $\quad 3 \mid m-3=4 p_{1}, \ldots p_{n}$, but this violates uniqueness of factorization. Page 7 Contradiction!
7. (10 points) Let p be an odd prime number and suppose that a is a square $\bmod p$. Prove that a is not a primitive root $\bmod p$ (ie. a is not a primitive $(p-1)^{\text {th }}$ root of unity in $\mathbb{Z} / p \mathbb{Z}$.)
If $a \equiv 0 \operatorname{mad} p$, then certainly a is not a root of unity, So assume $a \neq 0$ med. Let $a \equiv b^{2} \mathrm{med} p$.

$$
\Rightarrow a^{\frac{p-1}{2}} \equiv\left(b^{2}\right)^{\frac{p-1}{2}} \equiv b^{p-1} \equiv 1
$$

Fermat's Little The
$\Rightarrow a$ is rot primitive.
(note: $\frac{p-1}{2} \in \mathbb{Z}$, since P is add)

