Math 4400 Midterm 1

June 15, 2017

Question	Points	Score
1	15	
2	15	
3	15	
4	15	
5	20	
6	20	
7	0	
Total:	100	

1. (15 points) Find the continued fraction expansion of $\frac{81}{30}$

$$
\begin{aligned}
& 81=2 \cdot 30+21 \\
& 30=1 \cdot 21+9 \\
& 21=2 \cdot a+3 \\
& 9=3 \cdot 3
\end{aligned}
$$

$$
\text { So } \quad \begin{aligned}
\frac{81}{30} & =2+\frac{1}{1+\frac{1}{2+\frac{1}{3}}} \\
& =[2 ; 1,2,3]
\end{aligned}
$$

2. (15 points) Find a natural number x with $0 \leq x<175$, such that $6^{242} \equiv x \bmod 175$

$$
\begin{aligned}
& 175=5^{2} \cdot 7, \text { so } \\
& \begin{aligned}
\varphi(175) & =175 \cdot\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right) \\
& =175 \cdot \frac{4}{5} \cdot \frac{6}{7}=5 \cdot 4 \cdot 6=120
\end{aligned} \\
& \text { Thus ged }(6,175)=1, \text { since } 2 \times 175 \text { and } 3 \times 175, \\
& \text { so, using Euler's formula, } \\
& 6^{242} \equiv C^{2 \cdot 120+2} \equiv\left(6^{120}\right)^{2} \cdot 6^{2} \equiv 1 \cdot 36 \equiv 36 \bmod 175
\end{aligned}
$$

3. (15 points) Given the following equations, and the fact that $438 / 3=146$, find all incongruent solutions to the equation $303 x \equiv 3 \bmod 438$.

$$
\begin{aligned}
438 & =1 \cdot 303+135 \\
303 & =2 \cdot 135+33 \\
135 & =4 \cdot 33+3 \\
33 & =11 \cdot 3
\end{aligned}
$$

$$
\begin{aligned}
& 135-4.33=3 \\
\Rightarrow & 135-4 \cdot(303-2 \cdot 135)=3 \\
\Rightarrow & 9.135-4 \cdot 303=3 \\
\Rightarrow & 9 \cdot(438-303)-4 \cdot 303=3 \\
\Rightarrow & 9.438-13 \cdot 303=3 \\
\Rightarrow & -13 \cdot 303 \equiv 3 \quad \bmod 438 .
\end{aligned}
$$

So the incongruent solutions are:

$$
x=-13, \quad x \equiv-13+146, \quad x \equiv-13+2.146
$$

$$
\text { ie. } x \equiv 133, x \equiv 279 \text {, and } x \equiv 425
$$

mod 438
(There are 3 solutions since

$$
\operatorname{gd}(438,303)=3)
$$

Page 4
4. (15 points) Suppose $a, b, c, m \in \mathbb{Z}, m \neq 0$, and $\operatorname{gcd}(c, m)=1$. Suppose also that $a c \equiv b c$ mod m. Show that $a \equiv b \bmod m$.
Since $\operatorname{gcd}(c, m)=1, \quad \exists x \in \mathbb{Z}: \quad c x \equiv 1 \operatorname{mad} m$,
Then $a c \equiv b c \bmod m$
$\Rightarrow a c x=b c x \bmod m$
$\Rightarrow \quad a \cdot 1 \equiv b \cdot 1 \operatorname{mad} m$

Page 5
5. (20 points) Suppose $\operatorname{gcd}(a, m)=1$ and $\operatorname{gcd}(a, n)=1$. Show that $\operatorname{gcd}(a, m n)=1$.

Let $d \in \mathbb{N}$ such that $d l a$ and $d / m n$.
suppose $d>1$. Then we must have $\operatorname{ged}(d, n)=1$. Otherwise, $\exists e \in \mathbb{N}$, $e>1$, such that eld and elm. But, since eld, we know ela. Then $\operatorname{ged}(a, m) \geqslant e$, a contradiction.
Since dime and $\operatorname{gcd}(d, m)=1$, we know $d(n$. Thus $\operatorname{ged}(a, n) \geqslant d>1, \quad$ a contradiction.
6. (a) (5 points) Let $x, n \in \mathbb{Z}$ and suppose $\operatorname{gcd}(x, n)=d$. Prove that $\operatorname{gcd}\left(\frac{x}{d}, \frac{n}{d}\right)=1$.

Let $f \in \mathbb{N}$, such that $f \left\lvert\, \frac{x}{d}\right.$ and $f \left\lvert\, \frac{x}{x}\right.$.
Then $d f \mid x, d f \ln$, so $\quad d f \leq \operatorname{gcd}(x, n)=1$.
Thus $f=1$.
(b) (5 points) Let $x, n, d \in \mathbb{Z}$ and suppose $\operatorname{gcd}(x, n)=1$. Prove that $\operatorname{gcd}(x d, n d)=d$.

Since $d \mid x d$ and $d \mid n d$, we know $d(g \operatorname{ccd}(x d$, ind).
S Since $\operatorname{gad}\left((x d, n d) \mid x_{d}\right.$ and $\operatorname{ged}\left(x_{d}, n d\right) \mid n d$, we have $\quad \frac{\operatorname{ged}(x d, n d)}{d}|x, \quad \operatorname{gcd}(x d n d)| n \Rightarrow \frac{\operatorname{gcd}(x d, n d)}{d}=1$,
so $\operatorname{gcd}(x d, n d)=l$.
(c) (10 points) Let $d, n \in \mathbb{N}$ with $n>1$ and $d \mid n$. Show that $\varphi\left(\frac{n}{d}\right)=\# S$, where
$S=\{x \in \mathbb{N} \mid 1 \leq x \leq n, \operatorname{gcd}(x, n)=d\}$. (Use the back of the page if you run out of space)
Let $T=\{x \in \mathbb{N})\left(1 \leq x \leq \frac{n}{d}, \operatorname{gcd}\left(x,-\frac{n}{d}\right)=1\right\}$,
Then $\varphi\left(\frac{n}{d}\right)=\# T$, so $\omega \tau$: $\# T=\# S$.
Define $f: S \longrightarrow T$ by $x \longmapsto x / d$.
$\binom{$ Note: if $x \in S$, then $1 \leq X_{d} \leq n / d \quad$ and, by (a), }{$\operatorname{gcd}\left(\frac{x}{d}, \hat{\lambda}\right)=1$, so $X_{d} \in T}$
If $\frac{x_{1}}{d}=\frac{x_{2}}{d}$, Then $x_{1}=x_{2}$, so I injective,
If $y \in T$, then $1 \leq d y \leqslant n$ and $\operatorname{ged}(d y, n)=d$, by ($b)_{y}$, and $y=f(d y)$, Se f is surjective

Page 7
7. (10 points (bonus)) Use the last problem to prove that $\sum_{1 \leq d \leq n} \varphi(d)=n$.

Page 8

Scratch Paper (feel free to tear this off)

