- Problem 2: A few people lost points because they forgot to point out that $\operatorname{gcd}(6,175)=1$. This is important to note, as you wouldn't be able to use Euler's formula otherwise
- Problems 4/5: If p is prime and $p \mid a b$, then $p \mid a$ or $p \mid b$. It's very important that p is prime! Note that $10 \mid 2 \cdot 5$ but 10 doesn't divide 2 nor 5 .
- Bezout's lemma states: given $a, b, d \in \mathbb{Z}$, the equation $a x+b y=d$ has an integer solution $x, y \in \mathbb{Z}$ if and only if $\operatorname{gcd}(a, b) \mid d$. This does not imply that if $a x^{\prime}+b y^{\prime}=d$ for some integers $a, b, x^{\prime}, y^{\prime}$, then $d=\operatorname{gcd}(a, b)$.
- Problem 5: A few people said that since $\operatorname{gcd}(a, m)=1$ and $\operatorname{gcd}(a, n)=1$, there must exist $x, y \in \mathbb{Z}$ such that $a x+m y=1$ and $a x+n y=1$. This is not true. What is true is that there exist two pairs of integers, x_{1}, y_{1} and x_{2}, y_{2} such that $a x_{1}+m y_{1}=1$ and $a x_{2}+n y_{2}=1$. But there's no reason to think that $x_{1}=x_{2}$ and $y_{1}=y_{2}$.

