
Math 4400 Homework 7 Solutions key
Due: Monday, July 17th, 2017

Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a
note of who you worked with on each problem. Let me know if you find a typo, or you’re stuck on any of
the problems.

1. Solve the following equations:

(a) (5 points) x11 ≡ 13 mod 35

Solution: First, we check:

• gcd(13, 35) = 1

• gcd(11, ϕ(35)) = gcd(11, 24) = 1.

This means we can apply proposition 19 to find the solution, applying it to the group (Z/35Z)
×

:
we start by computing the inverse of 11 modulo 24,

24 = 2 · 11 + 2

11 = 5 · 2 + 1, so

1 = 11− 5 · 2 = 11− 5 · (24− 2 · 11) = 11 · 11− 5 · 24

We see that 11−1 ≡ 11 mod 24. So the answer is x ≡ 1311 mod 35. To figure out this number,
we proceed by repeated squaring,

132 ≡29

134 ≡292 ≡ 1

138 ≡12 ≡ 1

so 1311 ≡ 138 · 132 · 13 ≡ 1 · 29 · 13 ≡ 27.

(b) (5 points) x5 ≡ 3 mod 64

Solution: Similarly, we check:

• gcd(3, 64) ≡ 1

• gcd(5, ϕ(64)) = gcd(5, 32) = 1

So we can use proposition 19. Next, we compute the inverse of 5 modulo 32. In this case it’s
not too hard to it in your head: 13 · 5 ≡ 1 mod 32. So the solution is x ≡ 313. We compute,

32 ≡9 mod 64

34 ≡17 mod 64

38 ≡33 mod 64

So x ≡ 313 ≡ 33 · 17 · 13 ≡ 61 mod 64

2. (10 points) Find all the 6th roots of unity in Z/13Z. Which roots are primitive? (A calculator might be
helpful, here).



Solution: We start by making a table of all the 6th powers modulo 13:

x 1 2 3 4 5 6 7

x6 mod 13 1 12 1 1 12 12 12

Since 6 is even, we know x6 ≡ (−x)6 for all x, so the sixth roots of unity are 1, 3, 4,−1,−3 and −4.
To find the primitive sixth roots, we raise these numbers to the second and third powers:

x 1 3 4 −1 −3 −4

x2 mod 13 1 9 3 1 9 3

x 1 3 4 −1 −3 −4

x3 mod 13 1 1 12 −1 −1 −12

The first table shows 1,−1 are not primitive, and the second table shows that 3 and −4 are not
primitive. So the primitive sixth roots are 4 and −3, or equivalently 4 and 10.

3. (a) (5 points) Let p be a prime. Show that Φp(x) = xp−1 + xp−2 + · · ·+ 1.

Solution: This is a quick application of our recursive formula for Φn(X):

Φp(X) =
xp − 1∏

d|p,d<p Φd(X)
=
xp − 1

Φ1(X)

=
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1

(b) (5 points) Compute Φ8(X) and Φ9(X).

Solution: For this, it’s easiest to use the recursion formula,

Φn(X) =
Xn − 1∏

d|n,d<n Φd(X)

In particular,

Φ8(X) =
X8 − 1

Φ1(X)Φ2(X)Φ4(X)
=

X8 − 1

(X − 1)(X + 1)(X2 + 1)
=

X8 − 1

(X2 − 1)(X2 + 1)
=
X8 − 1

X4 − 1

using the values of Φ1,Φ2, and Φ4 that we found in class. By the difference of squares formula,
we see that X8 − 1 factors as

X8 − 1 =
(
X4 + 1

) (
X4 − 1

)
so Φ8(X) = X4 + 1

Similarly,

Φ9(X) =
X9 − 1

Φ1(X)Φ3(X)
=

X9 − 1

(X − 1) (X2 +X + 1)
=
X9 − 1

X3 − 1

Applying the factorization,

Y n − 1 = (Y − 1)(Y n−1 + Y n−2 + · · ·+ 1)

to the case where n = 3 and Y = X3, we see that X9 − 1 = (X3 − 1)(X6 + X3 + 1). So
Φ9(X) = X6 +X3 + 1.
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(c) (2 points) Conjecture a formula for Φpn(X), where p is prime and n is an integer.

Solution: There are many possible conjectures that fit the data from parts (a) and (b); in any
case, the correct formula is

Φpn(X) =
(
Xpn−1

)p−1
+
(
Xpn−1

)p−2
+ · · ·+Xpn−1

+ 1

4. (5 points) Let p be a prime. Prove that Z/pZ has a primitive (p− 1)th root of unity.

Solution: Fermat’s little theorem tells us that every element of (Z/pZ)× is a (p−1)th root of unity.
So there are p − 1 distinct (p − 1)th roots of unity in this field. Proposition 20 tells us that there
exist ϕ(p− 1) primitive roots. In particular, there is at least one.

5. Let p be a prime and α a primitive (p− 1)th root of unity in Z/pZ.

(a) (10 points) Let x ∈ (Z/pZ)×. Prove that x can be written as αn for some unique n in {1, 2, . . . , p−
1}. This number n is usually denoted I(x), and is called the index of x modulo p, with respect to
α. It’s also called the discrete logarithm of x modulo p, with respect to α.

Solution: As noted in the solution to problem 4, Fermat’s Little Theorem tells us that each
element of (Z/pZ)× is a (p − 1)st root of unity. In other words, (Z/pZ)× = µp−1(Z/pZ). As
we mentioned in class, if α is a primitive root, then α, α2, . . . , αp−1 are all distinct elements
of (Z/pZ)×. Now, since µp−1(Z/pZ) is closed under multiplication, we know µp−1(Z/pZ) ⊇{
α1, . . . , αp−1

}
. But both sets have size p − 1, so they must be equal. This finishes the

proof: we’ve just shown that each element of (Z/pZ)× can be written as αn for some n in
{1, 2, . . . , p− 1}. Since α1, . . . , αp−1 are all distinct, this n is unique.

For the sake of completeness, let’s reprove that α, α2, . . . , αp−1 are all distinct. Well, if αi = αj

for some i, j ∈ {1, 2, . . . , p− 1}, then αi−j = 1. But 0 ≤ i − j ≤ p − 2. By definition of a
primitive root, we must have i− j = 0, so i = j.

(b) (5 points) Show that the function I : (Z/pZ)
× → Z/(p− 1)Z is a homomorphism.

Solution: Note: if a ≡ b mod (p− 1), then αa = αb. So I(αa) = [a]p−1 for all a ∈ Z, and not
just for all a ∈ {1, 2, . . . , p− 1}. Thus:

I(αiαj) = I(αi+j) = [i+ j] = [i] + [j] = I(αi) + I(αj)

as desired.

6. (10 points) Let n > 1 be an integer. Show that
∑

ζ∈µn(C)

ζ = 0. (Hint: what happens when you multiply

that sum by any ζ ∈ µn(C)?)

Solution: Since n > 1, there exists some nth root of unity α ∈ µn(C) such that α 6= 1 (for instance,
we can always take α = e2πi/n). Notice that

α ·
∑

ζ∈µn(C)

ζ =
∑

ζ∈µn(C)

α · ζ
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Also, if ζ ∈ µn(C), then αζ ∈ µn(C), since µn(C) is a group under multiplication. So

{αζ | ζ ∈ µn(C)} ⊆ µn(C).

On the other hand, for all ζ ∈ µn(C), α−1ζ ∈ µn(C) and ζ = α
(
α−1ζ

)
. This shows that each

ζ ∈ µn(C) is a term in the summation
∑

ζ∈µn(C)

α · ζ. Finally, each ζ ∈ µn(C) appears in the

summation
∑

ζ∈µn(C)

α · ζ exactly once: if αζ1 = αζ2, then ζ1 = ζ2, since α 6= 0. Thus,

∑
ζ∈µn(C)

α · ζ =
∑

ζ∈µn(C)

ζ

Combining this with the first equation, we have

α ·
∑

ζ∈µn(C)

ζ =
∑

ζ∈µn(C)

ζ

Now suppose that
∑

ζ∈µn(C)

ζ 6= 0. Then we can multiply each side of the above equation by ∑
ζ∈µn(C)

ζ

−1 to get α = 1. But this is a contradiction.

7. (a) (10 points) Let p be an odd prime. Prove that exactly (p− 1)/2 elements of (Z/pZ)× are squares.

Solution: Let g ∈ (Z/pZ)
×

be primitive. Then (Z/pZ)
×

=
{
g1, . . . , gp−1

}
by problem 5a.

But we learned that gn is a square if and only if n is even. Since 1 is odd and p − 1 is even,
exactly half the elements of {1, 2, . . . , p− 1} are even, which completes the proof.

(b) (5 points) Use part (a) to show that, for each odd prime p, there exists a field of order p2.

Solution: By part (a), for each odd prime p there exists some integer d ∈ Z such that d is not

a square modulo p. But this means that Z[
√
d]/pZ[

√
d] is a field of size p2.

8. (5 points) Use Euler’s criterion to determine if the following are squares:

(a) 3 modulo 31

Solution: Euler’s criterion tells us that we need to check what 315 is congruent to modulo 31.
We compute

3 ≡3

32 ≡9

34 ≡19

38 ≡20

So 315 ≡ 38343231 ≡ 20 · 19 · 9 · 3 ≡≡ −1. Thus, 3 is not a square modulo 31, by Euler’s
criterion.
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(b) 7 modulo 29

Solution: Euler’s criterion tells us that we need to check what 714 is congruent to modulo 29.
We compute

7 ≡7

72 ≡20

74 ≡23

78 ≡7

So 715 ≡ 7 · 23 · 20 ≡ 1, so 7 is a square modulo 29, by Euler’s criterion.

9. (5 points) Let n be a positive integer. Let p be a prime divisor of n2 + 1. Prove that p ≡ 1 mod 4
(Hint: use proposition 23).

Solution: (We also need to assume that p 6= 2 for this problem; oops!) If p is a divisor of n2 + 1,
then n2 ≡ −1 mod p. In other words, −1 is a square modulo p. Thus p ≡ 1 mod 4 by proposition
23.

10. (10 points) Use the above to show that there are infinitely many primes congruent to 1 modulo 4. (Hint:
come up with infinitely many numbers of the form n2 + 1 that are all relatively prime to one-another).

Solution: Consider the sequence:

a1 = 5

an+1 =

(
n∏
i=1

an

)2

+ 1

Each ai must have an odd prime divisor pi, since ai > 2 for all i. By the previous problem, pi ≡ 1
mod 4. On the other hand, for all distinct i, j ∈ Z, j > i ≥ 1, ai and aj are relatively prime:
that’s because aj ≡ 1p for all primes p dividing ai, so in particular aj is not divisible by any primes
dividing ai. This tells us that pi 6= pj , so the set {pi | i ≥ 1} is an infinite set of primes congruent
to 1 modulo 4.
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