Math 4400 Homework 7 Solutions key
Due: Monday, July 17th, 2017

Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a
note of who you worked with on each problem. Let me know if you find a typo, or you’re stuck on any of
the problems.

1. Solve the following equations:
(a) (5 points) z'' =13 mod 35

Solution: First, we check:
e gcd(13,35) =1
e ged(11,9(35)) = ged(11,24) = 1.

This means we can apply proposition 19 to find the solution, applying it to the group (Z/35Z)
we start by computing the inverse of 11 modulo 24,

24=2-11+2
11=5-241, so
1=1-5-2=11-5-(24—2-11)=11-11-5-24

We see that 117! = 11 mod 24. So the answer is z = 13! mod 35. To figure out this number,
we proceed by repeated squaring,

132 =29
132 =29°=1
138=12=1

s0131'=13%-132.13=1-29-13 = 27.

(b) (5 points) 2° =3 mod 64

Solution: Similarly, we check:
e gcd(3,64) =1
o gcd(5,p(64)) = ged(5,32) =1

So we can use proposition 19. Next, we compute the inverse of 5 modulo 32. In this case it’s
not too hard to it in your head: 13-5=1 mod 32. So the solution is z = 3. We compute,

32=9 mod 64
3* =17 mod 64
3% =33 mod 64

Soz=3%=33-17-13 =61 mod 64

2. (10 points) Find all the 6" roots of unity in Z/13Z. Which roots are primitive? (A calculator might be
helpful, here).



3.

Solution: We start by making a table of all the 6 powers modulo 13:

z |
2° mod 13 |

[ 2 |3]
[12]1]

Since 6 is even, we know 2% = (—x)6 for all z, so the sixth roots of unity are 1,3,4,—1,—3 and —4.
To find the primitive sixth roots, we raise these numbers to the second and third powers:

415167
1

1
1 1212 ] 12

x |13 ]4]-1]-3]-4
2> mod13[1[9[3[ 1 ]9 | 3

x 13[4 |-1|-3]| —4

2 mod 13[1[1[12]-1]—-1]-12
The first table shows 1, —1 are not primitive, and the second table shows that 3 and —4 are not
primitive. So the primitive sixth roots are 4 and —3, or equivalently 4 and 10.

(a) (5 points) Let p be a prime. Show that ®,(z) = 2P~ + 2?72 + ... + 1.

Solution: This is a quick application of our recursive formula for ®,,(X):

P —1 P —1
P (X) = =
g [apacp a(X)  21(X)
P —1

= =2’ 2P P4 ot
x—1

(b) (5 points) Compute Pg(X) and Pg(X).

Solution: For this, it’s easiest to use the recursion formula,

Xm—1
O0(X) = 7= 70
Hd\n,d<n q)d(X)
In particular,
X8 -1 X8 -1 X8 -1 X8 -1

2 = M@ e X X DR IO D) (DD X1

using the values of @1, ®5, and ¢4 that we found in class. By the difference of squares formula,
we see that X® — 1 factors as
XP—1=(X"+1)(x*-1)

so Pg(X)=X*+1
Similarly,

X%-1 X% -1 XY -1
o(X) = o (X)P3(X) (X—1)(X2+X+1) X3-1

Applying the factorization,

Y —1=({Y 1)y +Yy" 24 ... 1)

to the case where n = 3 and Y = X?, we see that X? — 1 = (X3 — 1)(X® + X® +1). So
Po(X) =X+ X® 4+ 1.
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(c) (2 points) Conjecture a formula for ®,n (X), where p is prime and n is an integer.

Solution: There are many possible conjectures that fit the data from parts (a) and (b); in any
case, the correct formula is

4. (5 points) Let p be a prime. Prove that Z/pZ has a primitive (p — 1)*® root of unity.

Solution: Fermat’s little theorem tells us that every element of (Z/pZ)* is a (p— 1) root of unity.
So there are p — 1 distinct (p — 1)“rl roots of unity in this field. Proposition 20 tells us that there
exist p(p — 1) primitive roots. In particular, there is at least one.

5. Let p be a prime and « a primitive (p — 1) root of unity in Z/pZ.

(a) (10 points) Let x € (Z/pZ)*. Prove that x can be written as o for some unique n in {1,2,...,p—
1}. This number n is usually denoted I(z), and is called the index of x modulo p, with respect to
a. It’s also called the discrete logarithm of x modulo p, with respect to a.

Solution: As noted in the solution to problem 4, Fermat’s Little Theorem tells us that each
element of (Z/pZ)* is a (p — 1)™ root of unity. In other words, (Z/pZ)* = p,—1(Z/pZ). As
we mentioned in class, if « is a primitive root, then «,a?,...,a?~! are all distinct elements
of (Z/pZ)*. Now, since p,—1(Z/pZ) is closed under multiplication, we know p,_1(Z/pZ) 2
{al, .. .,apfl}. But both sets have size p — 1, so they must be equal. This finishes the
proof: we've just shown that each element of (Z/pZ)* can be written as " for some n in
{1,2,...,p—1}. Since a*,...,aP"! are all distinct, this n is unique.

For the sake of completeness, let’s reprove that o, a?, ..., a1 are all distinct. Well, if o/ = o/
for some 4,7 € {1,2,...,p—1}, then o' = 1. But 0 < i —j < p — 2. By definition of a
primitive root, we must have i — j =0, so i = j.

(b) (5 points) Show that the function I : (Z/pZ)* — Z/(p — 1)Z is a homomorphism.

Solution: Note: if a =b mod (p — 1), then a® = a”. So I(a®) = [a],_1 for all a € Z, and not
just for all a € {1,2,...,p — 1}. Thus:

I(aia?) = a™) = [i+ 5] = [i] + [j) = T(a') + (@)

as desired.

6. (10 points) Let n > 1 be an integer. Show that Z ¢ = 0. (Hint: what happens when you multiply

CE€un(C)
that sum by any ¢ € u,(C)?)

Solution: Since n > 1, there exists some nth root of unity a € u,(C) such that o # 1 (for instance,
we can always take o = e2™/™). Notice that

o ¥ = 3 ax

CE€Hn ((C) CEUn (C)
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Also, if ¢ € p,(C), then a¢ € u,(C), since u,(C) is a group under multiplication. So

{aC [ C € pn(C)} C pn(C).

On the other hand, for all ¢ € p,(C), a ¢ € p,(C) and ¢ = « (a_1 ). This shows that each

¢ € pp(C) is a term in the summation Z a - (. Finally, each ¢ € p,(C) appears in the
Ceun(C)
summation Z a - ¢ exactly once: if al; = as, then (; = (5, since a # 0. Thus,
CEun(C)

S e X
CE,U.”((C) CE,U.”((C)
Combining this with the first equation, we have

ar D C= D> ¢

C€un(C) ¢eun(C)

Now suppose that Z ¢ # 0. Then we can multiply each side of the above equation by
Cel"n(c)
-1
Z ¢ to get a = 1. But this is a contradiction.
CEun(C)

7. (a) (10 points) Let p be an odd prime. Prove that exactly (p —1)/2 elements of (Z/pZ)* are squares.

Solution: Let g € (Z/pZ)” be primitive. Then (Z/pZ)* = {gl, . ,gp_l} by problem 5a.
But we learned that g™ is a square if and only if n is even. Since 1 is odd and p — 1 is even,
exactly half the elements of {1,2,...,p — 1} are even, which completes the proof.

(b) (5 points) Use part (a) to show that, for each odd prime p, there exists a field of order p*.

Solution: By part (a), for each odd prime p there exists some integer d € Z such that d is not
a square modulo p. But this means that Z[V/d]/pZ[Vd] is a field of size p®.

8. (5 points) Use Euler’s criterion to determine if the following are squares:
(a) 3 modulo 31

Solution: Euler’s criterion tells us that we need to check what 3'° is congruent to modulo 31.
We compute

3=3
32 =9
31 =19
3% =20
So 315 = 38313231 = 20-19.9-3 == —1. Thus, 3 is not a square modulo 31, by Euler’s

criterion.
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(b) 7 modulo 29

Solution: Euler’s criterion tells us that we need to check what 7'* is congruent to modulo 29.
We compute

7T=7
7% =20
74 =23
7 =7

So 715 =7.23-.20=1, so 7 is a square modulo 29, by Euler’s criterion.

9. (5 points) Let n be a positive integer. Let p be a prime divisor of n? 4+ 1. Prove that p = 1 mod 4

(Hint: use proposition 23).

Solution: (We also need to assume that p # 2 for this problem; oops!) If p is a divisor of n? + 1,
then n? = —1 mod p. In other words, —1 is a square modulo p. Thus p =1 mod 4 by proposition
23.

10. (10 points) Use the above to show that there are infinitely many primes congruent to 1 modulo 4. (Hint:

come up with infinitely many numbers of the form n?® 4 1 that are all relatively prime to one-another).

Solution: Consider the sequence:

ayp = 5

n 2
Upt1 = <H an) +1
i=1

Each a; must have an odd prime divisor p;, since a; > 2 for all . By the previous problem, p; = 1
mod 4. On the other hand, for all distinct ¢,5 € Z, j > ¢ > 1, a; and a; are relatively prime:
that’s because a; = 1p for all primes p dividing a;, so in particular a; is not divisible by any primes
dividing a;. This tells us that p; # p;, so the set {p; | i > 1} is an infinite set of primes congruent
to 1 modulo 4.
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