Math 4400 Homework 7 Solutions key

Due: Monday, July 17th, 2017
Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a note of who you worked with on each problem. Let me know if you find a typo, or you're stuck on any of the problems.

1. Solve the following equations:
(a) (5 points) $x^{11} \equiv 13 \bmod 35$

Solution: First, we check:

- $\operatorname{gcd}(13,35)=1$
- $\operatorname{gcd}(11, \varphi(35))=\operatorname{gcd}(11,24)=1$.

This means we can apply proposition 19 to find the solution, applying it to the group $(\mathbb{Z} / 35 \mathbb{Z})^{\times}$: we start by computing the inverse of 11 modulo 24 ,

$$
\begin{aligned}
24 & =2 \cdot 11+2 \\
11 & =5 \cdot 2+1, \text { so } \\
1 & =11-5 \cdot 2=11-5 \cdot(24-2 \cdot 11)=11 \cdot 11-5 \cdot 24
\end{aligned}
$$

We see that $11^{-1} \equiv 11 \bmod 24$. So the answer is $x \equiv 13^{11} \bmod 35$. To figure out this number, we proceed by repeated squaring,

$$
\begin{aligned}
& 13^{2} \equiv 29 \\
& 13^{4} \equiv 29^{2} \equiv 1 \\
& 13^{8} \equiv 1^{2} \equiv 1
\end{aligned}
$$

so $13^{11} \equiv 13^{8} \cdot 13^{2} \cdot 13 \equiv 1 \cdot 29 \cdot 13 \equiv 27$.
(b) (5 points) $x^{5} \equiv 3 \bmod 64$

Solution: Similarly, we check:

- $\operatorname{gcd}(3,64) \equiv 1$
- $\operatorname{gcd}(5, \varphi(64))=\operatorname{gcd}(5,32)=1$

So we can use proposition 19. Next, we compute the inverse of 5 modulo 32 . In this case it's not too hard to it in your head: $13 \cdot 5 \equiv 1 \bmod 32$. So the solution is $x \equiv 3^{13}$. We compute,

$$
\begin{aligned}
& 3^{2} \equiv 9 \quad \bmod 64 \\
& 3^{4} \equiv 17 \quad \bmod 64 \\
& 3^{8} \equiv 33 \quad \bmod 64
\end{aligned}
$$

So $x \equiv 3^{13} \equiv 33 \cdot 17 \cdot 13 \equiv 61 \bmod 64$
2. (10 points) Find all the $6^{\text {th }}$ roots of unity in $\mathbb{Z} / 13 \mathbb{Z}$. Which roots are primitive? (A calculator might be helpful, here).

Solution: We start by making a table of all the $6^{\text {th }}$ powers modulo 13:

x	1	2	3	4	5	6	7
$x^{6} \quad \bmod 13$	1	12	1	1	12	12	12

Since 6 is even, we know $x^{6} \equiv(-x)^{6}$ for all x, so the sixth roots of unity are $1,3,4,-1,-3$ and -4 . To find the primitive sixth roots, we raise these numbers to the second and third powers:

x	1	3	4	-1	-3	-4
$x^{2} \bmod 13$	1	9	3	1	9	3

$\left.\begin{array}{l|l|l|l|l|l|l}x & 1 & 3 & 4 & -1 & -3 & -4 \\ \hline x^{3} & \bmod 13 & 1 & 1 & 12 & -1 & -1\end{array}\right)-12$

The first table shows $1,-1$ are not primitive, and the second table shows that 3 and -4 are not primitive. So the primitive sixth roots are 4 and -3 , or equivalently 4 and 10 .
3. (a) (5 points) Let p be a prime. Show that $\Phi_{p}(x)=x^{p-1}+x^{p-2}+\cdots+1$.

Solution: This is a quick application of our recursive formula for $\Phi_{n}(X)$:

$$
\begin{aligned}
\Phi_{p}(X) & =\frac{x^{p}-1}{\prod_{d \mid p, d<p} \Phi_{d}(X)}=\frac{x^{p}-1}{\Phi_{1}(X)} \\
& =\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x+1
\end{aligned}
$$

(b) (5 points) Compute $\Phi_{8}(X)$ and $\Phi_{9}(X)$.

Solution: For this, it's easiest to use the recursion formula,

$$
\Phi_{n}(X)=\frac{X^{n}-1}{\prod_{d \mid n, d<n} \Phi_{d}(X)}
$$

In particular,

$$
\Phi_{8}(X)=\frac{X^{8}-1}{\Phi_{1}(X) \Phi_{2}(X) \Phi_{4}(X)}=\frac{X^{8}-1}{(X-1)(X+1)\left(X^{2}+1\right)}=\frac{X^{8}-1}{\left(X^{2}-1\right)\left(X^{2}+1\right)}=\frac{X^{8}-1}{X^{4}-1}
$$

using the values of Φ_{1}, Φ_{2}, and Φ_{4} that we found in class. By the difference of squares formula, we see that $X^{8}-1$ factors as

$$
X^{8}-1=\left(X^{4}+1\right)\left(X^{4}-1\right)
$$

so $\Phi_{8}(X)=X^{4}+1$
Similarly,

$$
\Phi_{9}(X)=\frac{X^{9}-1}{\Phi_{1}(X) \Phi_{3}(X)}=\frac{X^{9}-1}{(X-1)\left(X^{2}+X+1\right)}=\frac{X^{9}-1}{X^{3}-1}
$$

Applying the factorization,

$$
Y^{n}-1=(Y-1)\left(Y^{n-1}+Y^{n-2}+\cdots+1\right)
$$

to the case where $n=3$ and $Y=X^{3}$, we see that $X^{9}-1=\left(X^{3}-1\right)\left(X^{6}+X^{3}+1\right)$. So $\Phi_{9}(X)=X^{6}+X^{3}+1$.
(c) (2 points) Conjecture a formula for $\Phi_{p^{n}}(X)$, where p is prime and n is an integer.

Solution: There are many possible conjectures that fit the data from parts (a) and (b); in any case, the correct formula is

$$
\Phi_{p^{n}}(X)=\left(X^{p^{n-1}}\right)^{p-1}+\left(X^{p^{n-1}}\right)^{p-2}+\cdots+X^{p^{n-1}}+1
$$

4. (5 points) Let p be a prime. Prove that $\mathbb{Z} / p \mathbb{Z}$ has a primitive $(p-1)^{\text {th }}$ root of unity.

Solution: Fermat's little theorem tells us that every element of $(\mathbb{Z} / p \mathbb{Z})^{\times}$is a $(p-1)^{\text {th }}$ root of unity. So there are $p-1$ distinct $(p-1)^{\text {th }}$ roots of unity in this field. Proposition 20 tells us that there exist $\varphi(p-1)$ primitive roots. In particular, there is at least one.
5. Let p be a prime and α a primitive $(p-1)^{\text {th }}$ root of unity in $\mathbb{Z} / p \mathbb{Z}$.
(a) (10 points) Let $x \in(\mathbb{Z} / p \mathbb{Z})^{\times}$. Prove that x can be written as α^{n} for some unique n in $\{1,2, \ldots, p-$ $1\}$. This number n is usually denoted $I(x)$, and is called the index of x modulo p, with respect to α. It's also called the discrete logarithm of x modulo p, with respect to α.

Solution: As noted in the solution to problem 4, Fermat's Little Theorem tells us that each element of $(\mathbb{Z} / p \mathbb{Z})^{\times}$is a $(p-1)^{\text {st }}$ root of unity. In other words, $(\mathbb{Z} / p \mathbb{Z})^{\times}=\mu_{p-1}(\mathbb{Z} / p \mathbb{Z})$. As we mentioned in class, if α is a primitive root, then $\alpha, \alpha^{2}, \ldots, \alpha^{p-1}$ are all distinct elements of $(\mathbb{Z} / p \mathbb{Z})^{\times}$. Now, since $\mu_{p-1}(\mathbb{Z} / p \mathbb{Z})$ is closed under multiplication, we know $\mu_{p-1}(\mathbb{Z} / p \mathbb{Z}) \supseteq$ $\left\{\alpha^{1}, \ldots, \alpha^{p-1}\right\}$. But both sets have size $p-1$, so they must be equal. This finishes the proof: we've just shown that each element of $(\mathbb{Z} / p \mathbb{Z})^{\times}$can be written as α^{n} for some n in $\{1,2, \ldots, p-1\}$. Since $\alpha^{1}, \ldots, \alpha^{p-1}$ are all distinct, this n is unique.
For the sake of completeness, let's reprove that $\alpha, \alpha^{2}, \ldots, \alpha^{p-1}$ are all distinct. Well, if $\alpha^{i}=\alpha^{j}$ for some $i, j \in\{1,2, \ldots, p-1\}$, then $\alpha^{i-j}=1$. But $0 \leq i-j \leq p-2$. By definition of a primitive root, we must have $i-j=0$, so $i=j$.
(b) (5 points) Show that the function $I:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \mathbb{Z} /(p-1) \mathbb{Z}$ is a homomorphism.

Solution: Note: if $a \equiv b \bmod (p-1)$, then $\alpha^{a}=\alpha^{b}$. So $I\left(\alpha^{a}\right)=[a]_{p-1}$ for all $a \in \mathbb{Z}$, and not just for all $a \in\{1,2, \ldots, p-1\}$. Thus:

$$
I\left(\alpha^{i} \alpha^{j}\right)=I\left(\alpha^{i+j}\right)=[i+j]=[i]+[j]=I\left(\alpha^{i}\right)+I\left(\alpha^{j}\right)
$$

as desired.
6. (10 points) Let $n>1$ be an integer. Show that $\sum_{\zeta \in \mu_{n}(\mathbb{C})} \zeta=0$. (Hint: what happens when you multiply that sum by any $\zeta \in \mu_{n}(\mathbb{C}) ?$)

Solution: Since $n>1$, there exists some nth root of unity $\alpha \in \mu_{n}(\mathbb{C})$ such that $\alpha \neq 1$ (for instance, we can always take $\left.\alpha=e^{2 \pi i / n}\right)$. Notice that

$$
\alpha \cdot \sum_{\zeta \in \mu_{n}(\mathbb{C})} \zeta=\sum_{\zeta \in \mu_{n}(\mathbb{C})} \alpha \cdot \zeta
$$

Also, if $\zeta \in \mu_{n}(\mathbb{C})$, then $\alpha \zeta \in \mu_{n}(\mathbb{C})$, since $\mu_{n}(\mathbb{C})$ is a group under multiplication. So

$$
\left\{\alpha \zeta \mid \zeta \in \mu_{n}(\mathbb{C})\right\} \subseteq \mu_{n}(\mathbb{C})
$$

On the other hand, for all $\zeta \in \mu_{n}(\mathbb{C}), \alpha^{-1} \zeta \in \mu_{n}(\mathbb{C})$ and $\zeta=\alpha\left(\alpha^{-1} \zeta\right)$. This shows that each $\zeta \in \mu_{n}(\mathbb{C})$ is a term in the summation $\sum_{\zeta \in \mu_{n}(\mathbb{C})} \alpha \cdot \zeta$. Finally, each $\zeta \in \mu_{n}(\mathbb{C})$ appears in the summation $\sum_{\zeta \in \mu_{n}(\mathbb{C})} \alpha \cdot \zeta$ exactly once: if $\alpha \zeta_{1}=\alpha \zeta_{2}$, then $\zeta_{1}=\zeta_{2}$, since $\alpha \neq 0$. Thus,

$$
\sum_{\zeta \in \mu_{n}(\mathbb{C})} \alpha \cdot \zeta=\sum_{\zeta \in \mu_{n}(\mathbb{C})} \zeta
$$

Combining this with the first equation, we have

$$
\alpha \cdot \sum_{\zeta \in \mu_{n}(\mathbb{C})} \zeta=\sum_{\zeta \in \mu_{n}(\mathbb{C})} \zeta
$$

Now suppose that $\sum_{\zeta \in \mu_{n}(\mathbb{C})} \zeta \neq 0$. Then we can multiply each side of the above equation by $\left(\sum_{\zeta \in \mu_{n}(\mathbb{C})} \zeta\right)^{-1}$ to get $\alpha=1$. But this is a contradiction.
7. (a) (10 points) Let p be an odd prime. Prove that exactly $(p-1) / 2$ elements of $(\mathbb{Z} / p \mathbb{Z})^{\times}$are squares.

Solution: Let $g \in(\mathbb{Z} / p \mathbb{Z})^{\times}$be primitive. Then $(\mathbb{Z} / p \mathbb{Z})^{\times}=\left\{g^{1}, \ldots, g^{p-1}\right\}$ by problem 5a. But we learned that g^{n} is a square if and only if n is even. Since 1 is odd and $p-1$ is even, exactly half the elements of $\{1,2, \ldots, p-1\}$ are even, which completes the proof.
(b) (5 points) Use part (a) to show that, for each odd prime p, there exists a field of order p^{2}.

Solution: By part (a), for each odd prime p there exists some integer $d \in \mathbb{Z}$ such that d is not a square modulo p. But this means that $\mathbb{Z}[\sqrt{d}] / p \mathbb{Z}[\sqrt{d}]$ is a field of size p^{2}.
8. (5 points) Use Euler's criterion to determine if the following are squares:
(a) 3 modulo 31

Solution: Euler's criterion tells us that we need to check what 3^{15} is congruent to modulo 31 . We compute

$$
\begin{aligned}
3 & \equiv 3 \\
3^{2} & \equiv 9 \\
3^{4} & \equiv 19 \\
3^{8} & \equiv 20
\end{aligned}
$$

So $3^{15} \equiv 3^{8} 3^{4} 3^{2} 3^{1} \equiv 20 \cdot 19 \cdot 9 \cdot 3 \equiv \equiv-1$. Thus, 3 is not a square modulo 31, by Euler's criterion.
(b) 7 modulo 29

Solution: Euler's criterion tells us that we need to check what 7^{14} is congruent to modulo 29. We compute

$$
\begin{aligned}
7 & \equiv 7 \\
7^{2} & \equiv 20 \\
7^{4} & \equiv 23 \\
7^{8} & \equiv 7
\end{aligned}
$$

So $7^{15} \equiv 7 \cdot 23 \cdot 20 \equiv 1$, so 7 is a square modulo 29 , by Euler's criterion.
9. (5 points) Let n be a positive integer. Let p be a prime divisor of $n^{2}+1$. Prove that $p \equiv 1 \bmod 4$ (Hint: use proposition 23).

Solution: (We also need to assume that $p \neq 2$ for this problem; oops!) If p is a divisor of $n^{2}+1$, then $n^{2} \equiv-1 \bmod p$. In other words, -1 is a square modulo p. Thus $p \equiv 1 \bmod 4$ by proposition 23.
10. (10 points) Use the above to show that there are infinitely many primes congruent to 1 modulo 4. (Hint: come up with infinitely many numbers of the form $n^{2}+1$ that are all relatively prime to one-another).

Solution: Consider the sequence:

$$
\begin{aligned}
& a_{1}= \\
& a_{n+1}= \\
&\left(\prod_{i=1}^{n} a_{n}\right)^{2}+1
\end{aligned}
$$

Each a_{i} must have an odd prime divisor p_{i}, since $a_{i}>2$ for all i. By the previous problem, $p_{i} \equiv 1$ $\bmod 4$. On the other hand, for all distinct $i, j \in \mathbb{Z}, j>i \geq 1, a_{i}$ and a_{j} are relatively prime: that's because $a_{j} \equiv 1 p$ for all primes p dividing a_{i}, so in particular a_{j} is not divisible by any primes dividing a_{i}. This tells us that $p_{i} \neq p_{j}$, so the set $\left\{p_{i} \mid i \geq 1\right\}$ is an infinite set of primes congruent to 1 modulo 4 .

