Math 4400 Homework 6

Due: Wednesday, July 5th, 2017
Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a note of who you worked with on each problem. Let me know if you find a typo, or you're stuck on any of the problems.

1. (5 points) Let R be a ring and let $r \in R$. Show that $\left(-1_{R}\right) \cdot r=-r$. In other words, show that $\left(-1_{R}\right) \cdot r+r=r+\left(-1_{R}\right) \cdot r=0_{R}$.

Solution: By definition of additive inverses, $1_{R}+\left(-1_{R}\right)=0_{R}$. Multiplying both sides by r on the right, we get $\left(1_{R}+\left(-1_{R}\right)\right) \cdot r=0_{R} \cdot r$. Using the distributive property on the left-hand-side: $1_{R} \cdot r+\left(-1_{R}\right) \cdot r=0_{R} \cdot r$. Now, by definition of the multiplicative identity, $1_{R} \cdot r=r$. Also, we proved in class that $0_{R} \cdot r=0_{R}$. Thus we have just proven $r+\left(-1_{R}\right) \cdot r=0_{R}$. Since addition is commutative, we see that $\left(-1_{R}\right) \cdot r+r=r+\left(-1_{R}\right) \cdot r$.
2. (10 points) Let ω be a quadratic rational. Prove that $\mathbb{Q}[\omega]$ is a field. (Hint: First prove that $\mathbb{Q}[\omega]=$ $\mathbb{Q}[\sqrt{D}]$ for some $D \in \mathbb{Q}$, and then prove $\mathbb{Q}[\sqrt{D}]$ is a field by "rationalizing the denominator" like we did in class)

Solution: By definition, ω is the root of some polynomial $x^{2}+p x+q$, where $p, q \in \mathbb{Q}$. Thus we can write

$$
\omega=\frac{-p \pm \sqrt{p^{2}-4 q}}{2}
$$

Let $D=p^{2}-4 q$ and suppose $\omega=\frac{-p+\sqrt{p^{2}-4 q}}{2}$. Then we can write $\omega=\frac{-p}{2}+\frac{1}{2} \sqrt{D}$. Thus, any element $a+b \omega \in \mathbb{Q}[\omega]$ as

$$
a+b \omega=a+b\left(-\frac{p}{2}+\frac{1}{2} \sqrt{D}\right)=\left(a-\frac{p b}{2}\right)+\frac{b}{2} \sqrt{D} \in \mathbb{Q}[\sqrt{D}]
$$

This shows that $\mathbb{Q}[\omega] \subseteq \mathbb{Q}[\sqrt{D}]$. On the other hand, $\sqrt{D}=2 \omega+\frac{p}{2}$, so any element $a+b \sqrt{D} \in \mathbb{Q}[\sqrt{D}]$ can be written as:

$$
a+b \sqrt{D}=a+b\left(2 \omega+\frac{p}{2}\right)=\left(a+\frac{b p}{2}\right)+2 b \omega \in \mathbb{Q}[\omega]
$$

This shows $\mathbb{Q}[\sqrt{D}] \subseteq \mathbb{Q}[\omega]$, and so $\mathbb{Q}[\omega]=\mathbb{Q}[\sqrt{D}]$. We assumed here that $\omega=\frac{-p+\sqrt{p^{2}-4 q}}{2}$, but the same argument works if $\omega=\frac{-p-\sqrt{p^{2}-4 q}}{2}$. So in any case, we just have to show that $\mathbb{Q}[\sqrt{D}]$ is a field.
If $\sqrt{D} \in \mathbb{Q}$, then $\mathbb{Q}[\sqrt{D}]=\mathbb{Q}$, which is a field. So assume $\sqrt{D} \notin \mathbb{Q}$ and let α be a nonzero element of $\mathbb{Q}[\sqrt{D}]$. We can write $\alpha=a+b \sqrt{D}$ for some $a, b \in \mathbb{Q}$. Since we assumed $\sqrt{D} \notin \mathbb{Q}$, we have $a-b \sqrt{D} \neq 0$, so we compute:

$$
\frac{1}{a+b \sqrt{D}}=\frac{a-b \sqrt{D}}{a^{2}-b^{2} D}=\frac{a}{a^{2}-b^{2} D}+\frac{-b}{a^{2}-b^{2} D} \sqrt{D} \in \mathbb{Q}[\sqrt{D}]
$$

3. (a) (10 points) Prove that there are infinitely many prime numbers congruent to 2 modulo 3. Hint: proceed by contradiction. Suppose that $S=\left\{p_{1}, p_{2}, \cdots, p_{s}\right\}$ is the set of all primes congruent to 2 modulo 3 , aside from 2. Consider the number $m=3 p_{1} p_{2} \cdots p_{s}+2$. Show that m is divisible by a prime congruent to 2 modulo 3 , but that at the same time m is not divisible by 2 nor by any element of S.

Solution: Since $m=3 p_{1} p_{2} \cdots p_{s}+2$, we know that $m \equiv 2 \bmod 3$. We know there exist some primes $q_{1}, \ldots, q_{r} \in \mathbb{Z}$ such that $m=q_{1} q_{2} \cdots q_{r}$. If any of the q_{i} is congruent to $0 \bmod 3$, then m is congruent to $0 \bmod 3$. If all the q_{i} are congruent to 1 modulo 3 , then m is congruent to 1 modulo 3 . Thus there must be some q_{i} that's congruent to 2 modulo 3 . We can relabel the q 's so that $q_{1} \equiv 2 \bmod 3$. Now, each p_{i} in S is odd, we know that m is odd as well: it's a bunch of odd numbers multiplied together and added to an even number. So this means q_{1} cannot be equal to 2 . Thus, q_{1} is an odd prime congruent to 2 modulo 3 . However, q_{1} cannot be any of the elements of S, because m isn't divisible by any element of S (here, it's again important that $2 \notin S)$. This is a contradiction.
(b) (2 points) What happens if we try to use the same method to prove there are infinitely many primes congruent to 1 modulo 3 ? What goes wrong?

Solution: Above, we argued that one of the q_{i} had to be congruent to 2 modulo 3 , since the product of a bunch of numbers congruent to 1 modulo 3 will still be congruent to 1 modulo
3. However, the product of a bunch of numbers congruent to 2 modulo 3 can be congruent to 1 modulo 3 : for instance, $2 \cdot 2 \equiv 1 \bmod 3$. That's where the argument breaks down. It's still true that there are infinitely many primes congruent to 1 modulo 3 , but we need to use a fundamentally different method to prove this.
4. (a) (5 points) Find the inverse of $5+4 i$ in $\mathbb{Z}[i] / 7 \mathbb{Z}[i]$

Solution: We use the formula: $\alpha^{-1}=\bar{\alpha} \cdot N(\alpha)^{-1}$. Here, $N(\alpha)=25-16 i^{2}=25+16=41$, so we need to find the inverse of 41 modulo 7 . Well, $41 \equiv-1$ modulo 7 , so $N(\alpha)^{-1}=-1$. Thus $\alpha^{-1} \equiv-5+4 i \equiv 2+4 i$.
Just as a sanity check, we compute $(5+4 i)(2+4 i)=10+28 i+16 i^{2} \equiv 1$
(b) (5 points) Find the inverse of $1+2 \sqrt{6}$ in $\mathbb{Z}[\sqrt{6}] / 7 \mathbb{Z}[\sqrt{6}]$.

Solution: Here $N(\alpha)=1-4 \cdot 6=-23 \equiv 5 \bmod 7$. Here it's easy enough to check by "brute force" what the inverse of 5 is $\bmod 7$; we see that $3 \cdot 5=1 \bmod 7$, so 3 is the inverse. Thus $\alpha^{-1}=3 \cdot(1-2 \sqrt{6})=3-6 \sqrt{6} \equiv 3+\sqrt{6}$.
(c) (2 points) Is $2+6 \sqrt{5}$ invertible in $\mathbb{Z}[\sqrt{5}] / 11 \mathbb{Z}[\sqrt{5}]$? Why or why not?

Solution: As we discussed in class, it all has to do with the norm of $2+6 \sqrt{5}$: its norm is $2^{2}-6^{2} \cdot 5=-176 \equiv 0 \bmod 11$, so the answer is no.
5. (a) (5 points) Let k be a field of characteristic 0 . For all $f(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0}$ in $k[X]$, define the derivative of $f(X)$, denoted $f^{\prime}(X)$, as $\left(n \cdot a_{n}\right) X^{n-1}+(n-1) a_{n-1} X^{n-2}+\cdots+\left(2 a_{2}\right) X+a_{1}$. Prove that, if $f^{\prime}(X)=0$, then $f(X)=c$, for some $c \in k$.

Solution: If $f^{\prime}(X)=0$, that means $i \cdot a_{i}=0$ for all i, such that $1 \leq i \leq n$. Now, since k has characteristic $0, i \cdot 1 \neq 0$ for all such i. But we have $i \cdot a_{i}=(i \cdot 1) \cdot a_{i}=0$, so $a_{i}=0$ whenever $1 \leq i \leq n$, since fields don't have zero divisors. This shows that $f(X)=a_{0} \in k$.
(b) (5 points) Show, by example, that this is not necessarily true if char $k \neq 0$.

Solution: Take $k=\mathbb{Z} / 3 \mathbb{Z}$. Then if $f(X)=X^{9}+2 X^{3}+1$, we have $f^{\prime}(X)=3 X^{8}+6 X=0$, even though f is certainly not a constant. This is another one of the big reasons why fields of characteristic p are weird.
6. (a) (5 points) What are all the elements of $(\mathbb{Z}[i])^{\times}$?

Solution: Let $a+b i \in \mathbb{Z}[i]$ be nonzero. Then $\frac{1}{a+b i}=\frac{a-b i}{a^{2}+b^{2}}$. The only way this can be an element of $(\mathbb{Z}[i])^{\times}$is if $\left(a^{2}+b^{2}\right) \mid a$ and $\left(a^{2}+b^{2}\right) \mid b$. Now, for any integers $n, m \in \mathbb{Z}$, if $n \mid m$ and $m \neq 0$ then we must have $|n| \leq|m|$. On the other hand, $\left|a^{2}+b^{2}\right| \geq\left|a^{2}\right| \geq|a|$. Thus, if $\left|a^{2}+b^{2}\right| \leq|a|$, either $a=0$ or we must have $\left|a^{2}+b^{2}\right|=|a|$. But this means $\left|a^{2}+b^{2}\right|=\left|a^{2}\right|$ and $\left|a^{2}\right|=|a|$; since $a^{2}, b^{2} \geq 0$, the first equation tells us that $b=0$. Since $\left|a^{2}\right|=|a|^{2}$, the second equation tells us that $|a|=1$. In summary, if $\left(a^{2}+b^{2}\right) \mid a$, then either $a=0$, or $|a|=1$ and $b=0$. Similarly, if $\left(a^{2}+b^{2}\right) \mid b$, then either $b=0$, or $|b|=1$ and $a=0$. Thus, if $a+b i \in(\mathbb{Z}[i])^{\times}$, then either $|a|=1$ and $b=0$, or $a=0$ and $|b|=1$. In other words, $(\mathbb{Z}[i])^{\times}=\{1, i,-1,-i\}$.
(b) (5 points) Prove that the groups $(\mathbb{Z}[i])^{\times}$and $\mathbb{Z} / 4 \mathbb{Z}$ are isomorphic

Solution: Note that $(\mathbb{Z}[i])^{\times}=\left\{i^{0}, i^{1}, i^{2}, i^{3}\right\}$. Let $\varphi:(\mathbb{Z}[i])^{\times} \rightarrow \mathbb{Z} / 4 \mathbb{Z}$ be the function defined by $\varphi\left(i^{n}\right)=[n]$, for $n=0,1,2,3$. Then φ is a homomorphism: for any two elements $i^{n}, i^{m} \in$ $\mathbb{Z}[i]^{\times}$,

$$
\varphi\left(i^{n} i^{m}\right)=\varphi\left(i^{n+m}\right)=[n+m]=[n]+[m]=\varphi\left(i^{n}\right)+\varphi\left(i^{m}\right)
$$

Further, φ is a bijection: $\varphi(1)=[0], \varphi(i)=[1], \varphi(-1)=[2]$, and $\varphi(-i)=[3]$. It's clear that each element of $\mathbb{Z} / 4 \mathbb{Z}$ gets mapped onto, and that no two elements of $\mathbb{Z}[i]^{\times}$get mapped to the same thing.
7. (5 points) Use the Lucas-Lehmer test to show that M_{11} is not prime.

Solution: The Lucas-Lehmer sequence, modulo $2^{11}-1$, is:

$s_{1}=$	4
$s_{2}=$	14
$s_{3}=$	194
$s_{4}=$	788
$s_{5}=$	701
$s_{6}=$	119
$s_{7}=$	1877
$s_{8}=$	240
$s_{9}=$	282
$s_{10}=$	1736

Since $s_{10} \not \equiv 0$, we see that $M_{11}=2^{11}-1$ is not prime.

Extra credit

8. (10 points (bonus)) Prove that $\mathbb{Z}[\sqrt{2}] / 5 \mathbb{Z}[\sqrt{2}]$ and $\mathbb{Z}[\sqrt{3}] / 5 \mathbb{Z}[\sqrt{3}]$ are isomorphic as rings.
9. (10 points (bonus)) Let F be a field of characteristic 0 . Show that F contains a subring isomorphic to \mathbb{Q}
10. (10 points (bonus)) Use the Lucas-Lehmer test to determine which of the following Mersenne numbers are prime: M_{19}, M_{23}, and M_{31}
