
Math 4400 Homework 6
Due: Wednesday, July 5th, 2017

Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a
note of who you worked with on each problem. Let me know if you find a typo, or you’re stuck on any of
the problems.

1. (5 points) Let R be a ring and let r ∈ R. Show that (−1R) · r = −r. In other words, show that
(−1R) · r + r = r + (−1R) · r = 0R.

Solution: By definition of additive inverses, 1R + (−1R) = 0R. Multiplying both sides by r on
the right, we get (1R + (−1R)) · r = 0R · r. Using the distributive property on the left-hand-side:
1R · r + (−1R) · r = 0R · r. Now, by definition of the multiplicative identity, 1R · r = r. Also, we
proved in class that 0R · r = 0R. Thus we have just proven r + (−1R) · r = 0R. Since addition is
commutative, we see that (−1R) · r + r = r + (−1R) · r.

2. (10 points) Let ω be a quadratic rational. Prove that Q[ω] is a field. (Hint: First prove that Q[ω] =

Q[
√
D] for some D ∈ Q, and then prove Q[

√
D] is a field by “rationalizing the denominator” like we did

in class)

Solution: By definition, ω is the root of some polynomial x2 + px + q, where p, q ∈ Q. Thus we
can write

ω =
−p±

√
p2 − 4q

2

Let D = p2 − 4q and suppose ω =
−p+

√
p2 − 4q

2
. Then we can write ω =

−p
2

+
1

2

√
D. Thus, any

element a+ bω ∈ Q[ω] as

a+ bω = a+ b

(
−p

2
+

1

2

√
D

)
=

(
a− pb

2

)
+
b

2

√
D ∈ Q

[√
D
]

This shows that Q[ω] ⊆ Q[
√
D]. On the other hand,

√
D = 2ω+

p

2
, so any element a+b

√
D ∈ Q[

√
D]

can be written as:

a+ b
√
D = a+ b

(
2ω +

p

2

)
=

(
a+

bp

2

)
+ 2bω ∈ Q[ω]

This shows Q[
√
D] ⊆ Q[ω], and so Q[ω] = Q[

√
D]. We assumed here that ω =

−p+
√
p2 − 4q

2
, but

the same argument works if ω =
−p−

√
p2 − 4q

2
. So in any case, we just have to show that Q[

√
D]

is a field.

If
√
D ∈ Q, then Q[

√
D] = Q, which is a field. So assume

√
D 6∈ Q and let α be a nonzero element

of Q[
√
D]. We can write α = a + b

√
D for some a, b ∈ Q. Since we assumed

√
D 6∈ Q, we have

a− b
√
D 6= 0, so we compute:

1

a+ b
√
D

=
a− b

√
D

a2 − b2D
=

a

a2 − b2D
+

−b
a2 − b2D

√
D ∈ Q[

√
D]



3. (a) (10 points) Prove that there are infinitely many prime numbers congruent to 2 modulo 3. Hint:
proceed by contradiction. Suppose that S = {p1, p2, · · · , ps} is the set of all primes congruent to
2 modulo 3, aside from 2. Consider the number m = 3p1p2 · · · ps + 2. Show that m is divisible by
a prime congruent to 2 modulo 3, but that at the same time m is not divisible by 2 nor by any
element of S.

Solution: Since m = 3p1p2 · · · ps + 2, we know that m ≡ 2 mod 3. We know there exist some
primes q1, . . . , qr ∈ Z such that m = q1q2 · · · qr. If any of the qi is congruent to 0 mod 3, then
m is congruent to 0 mod 3. If all the qi are congruent to 1 modulo 3, then m is congruent to 1
modulo 3. Thus there must be some qi that’s congruent to 2 modulo 3. We can relabel the q’s
so that q1 ≡ 2 mod 3. Now, each pi in S is odd, we know that m is odd as well: it’s a bunch
of odd numbers multiplied together and added to an even number. So this means q1 cannot
be equal to 2. Thus, q1 is an odd prime congruent to 2 modulo 3. However, q1 cannot be any
of the elements of S, because m isn’t divisible by any element of S (here, it’s again important
that 2 6∈ S). This is a contradiction.

(b) (2 points) What happens if we try to use the same method to prove there are infinitely many primes
congruent to 1 modulo 3? What goes wrong?

Solution: Above, we argued that one of the qi had to be congruent to 2 modulo 3, since the
product of a bunch of numbers congruent to 1 modulo 3 will still be congruent to 1 modulo
3. However, the product of a bunch of numbers congruent to 2 modulo 3 can be congruent
to 1 modulo 3: for instance, 2 · 2 ≡ 1 mod 3. That’s where the argument breaks down. It’s
still true that there are infinitely many primes congruent to 1 modulo 3, but we need to use a
fundamentally different method to prove this.

4. (a) (5 points) Find the inverse of 5 + 4i in Z[i]/7Z[i]

Solution: We use the formula: α−1 = α ·N(α)−1. Here, N(α) = 25− 16i2 = 25 + 16 = 41, so
we need to find the inverse of 41 modulo 7. Well, 41 ≡ −1 modulo 7, so N(α)−1 = −1. Thus
α−1 ≡ −5 + 4i ≡ 2 + 4i.

Just as a sanity check, we compute (5 + 4i)(2 + 4i) = 10 + 28i+ 16i2 ≡ 1

(b) (5 points) Find the inverse of 1 + 2
√

6 in Z[
√

6]/7Z[
√

6].

Solution: Here N(α) = 1− 4 · 6 = −23 ≡ 5 mod 7. Here it’s easy enough to check by “brute
force” what the inverse of 5 is mod 7; we see that 3 · 5 = 1 mod 7, so 3 is the inverse. Thus
α−1 = 3 · (1− 2

√
6) = 3− 6

√
6 ≡ 3 +

√
6.

(c) (2 points) Is 2 + 6
√

5 invertible in Z[
√

5]/11Z[
√

5]? Why or why not?

Solution: As we discussed in class, it all has to do with the norm of 2 + 6
√

5: its norm is
22 − 62 · 5 = −176 ≡ 0 mod 11, so the answer is no.

5. (a) (5 points) Let k be a field of characteristic 0. For all f(X) = anX
n +an−1X

n−1 + · · ·+a0 in k[X],
define the derivative of f(X), denoted f ′(X), as (n ·an)Xn−1+(n−1)an−1X

n−2+ · · ·+(2a2)X+a1.
Prove that, if f ′(X) = 0, then f(X) = c, for some c ∈ k.
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Solution: If f ′(X) = 0, that means i · ai = 0 for all i, such that 1 ≤ i ≤ n. Now, since k has
characteristic 0, i · 1 6= 0 for all such i. But we have i · ai = (i · 1) · ai = 0, so ai = 0 whenever
1 ≤ i ≤ n, since fields don’t have zero divisors. This shows that f(X) = a0 ∈ k.

(b) (5 points) Show, by example, that this is not necessarily true if char k 6= 0.

Solution: Take k = Z/3Z. Then if f(X) = X9 + 2X3 + 1, we have f ′(X) = 3X8 + 6X = 0,
even though f is certainly not a constant. This is another one of the big reasons why fields of
characteristic p are weird.

6. (a) (5 points) What are all the elements of (Z[i])
×

?

Solution: Let a+ bi ∈ Z[i] be nonzero. Then
1

a+ bi
=

a− bi
a2 + b2

. The only way this can be an

element of (Z[i])
×

is if (a2 + b2) | a and (a2 + b2) | b. Now, for any integers n,m ∈ Z, if n | m
and m 6= 0 then we must have |n| ≤ |m|. On the other hand,

∣∣a2 + b2
∣∣ ≥ |a2| ≥ |a|. Thus, if

|a2 + b2| ≤ |a|, either a = 0 or we must have |a2 + b2| = |a|. But this means |a2 + b2| = |a2| and
|a2| = |a|; since a2, b2 ≥ 0, the first equation tells us that b = 0. Since |a2| = |a|2, the second
equation tells us that |a| = 1. In summary, if (a2 + b2) | a, then either a = 0, or |a| = 1 and
b = 0. Similarly, if (a2 +b2) | b, then either b = 0, or |b| = 1 and a = 0. Thus, if a+bi ∈ (Z[i])×,
then either |a| = 1 and b = 0, or a = 0 and |b| = 1. In other words, (Z[i])× = {1, i,−1,−i}.

(b) (5 points) Prove that the groups (Z[i])
×

and Z/4Z are isomorphic

Solution: Note that (Z[i])× =
{
i0, i1, i2, i3

}
. Let ϕ : (Z[i])

× → Z/4Z be the function defined
by ϕ(in) = [n], for n = 0, 1, 2, 3. Then ϕ is a homomorphism: for any two elements in, im ∈
Z[i]×,

ϕ(inim) = ϕ(in+m) = [n+m] = [n] + [m] = ϕ(in) + ϕ(im)

Further, ϕ is a bijection: ϕ(1) = [0], ϕ(i) = [1], ϕ(−1) = [2], and ϕ(−i) = [3]. It’s clear that
each element of Z/4Z gets mapped onto, and that no two elements of Z[i]× get mapped to the
same thing.

7. (5 points) Use the Lucas-Lehmer test to show that M11 is not prime.

Solution: The Lucas-Lehmer sequence, modulo 211 − 1, is:

s1 = 4

s2 = 14

s3 = 194

s4 = 788

s5 = 701

s6 = 119

s7 = 1877

s8 = 240

s9 = 282

s10 = 1736
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Since s10 6≡ 0, we see that M11 = 211 − 1 is not prime.

Extra credit

8. (10 points (bonus)) Prove that Z[
√

2]/5Z[
√

2] and Z[
√

3]/5Z[
√

3] are isomorphic as rings.

9. (10 points (bonus)) Let F be a field of characteristic 0. Show that F contains a subring isomorphic to
Q

10. (10 points (bonus)) Use the Lucas-Lehmer test to determine which of the following Mersenne numbers
are prime: M19, M23, and M31
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