
Math 4400 Homework 5
Due: Friday, June 23rd, 2017

Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a
note of who you worked with on each problem. Let me know if you find a typo, or you’re stuck on any of
the problems.

1. (5 points) Prove that multiplication of 2× 2 matrices with real entries is associative.

Solution: This is just a simple, but tedious computation: we let L,M,N be three arbitrary 2× 2
matrices with real entries. Then there exist real numbers a, b, c, d, e, f, g, h, i, j, k, l ∈ R such that

L =

(
a b
c d

)
, M =

(
e f
g h

)
, N =

(
i j
k l

)
Then

L ·M =

(
ae + bg af + bh
ce + dg cf + dh

)
which means

(L ·M) ·N =

(
ae + bg af + bh
ce + dg cf + dh

)
·
(
i j
k l

)
=

(
(ae + bg)i + (af + bh)k (ae + bg)j + (af + bh)l
(cd + dg)i + (cf + dh)k (ce + dg)j + (cf + dh)l

)
Further,

M ·N =

(
ei + fk ej + fl
gi + hk gj + hl

)
which means

L · (M ·N) =

(
a b
c d

)
·
(
ei + fk ej + fl
gi + hk gj + hl

)
=

(
a(ei + fk) + b(gi + hk) a(ej + fl) + b(gj + hl)
c(ei + fk) + d(gi + hk) c(ej + fl) + d(gj + hl)

)
We wish to show that (L ·M) ·N = L · (M ·N). So we just have to check the following equalities:

(ae + bg)i + (af + bh)k = a(ei + fk) + b(gi + hk)

(ae + bg)j + (af + bh)l = a(ej + fl) + b(gj + hl)

(cd + dg)i + (cf + dh)k = c(ei + fk) + d(gi + hk)

(ce + dg)j + (cf + dh)l = c(ej + fl) + d(gj + hl)

which just follows from the associativity, distributivity, and commutativity properties of the real
numbers.

2. (a) (5 points) Let GL2(R) be the set of invertible 2× 2 matrices with real entries. Prove that GL2(R)
is a group under multiplication

Solution: Let A,B ∈ GL2(R). Then, by definition A has an inverse matrix A−1 and B has
an invnerse matrix B−1. We note that

(AB)(B−1A−1) = (B−1A−1)AB = I

Where I is the identity matrix. Thus AB is also an invertible 2 × 2 matrix with real entries.
This shows multiplication is a binary operation on GL2(R).



Next, we have to check that GL2(R) has an identity element. Since I is invertible, we see that
I ∈ GL2(R). Since

IM = MI = M

for all 2× 2 matrices, we see that I is the identity element of GL2(R).

By problem 1, multiplication is an associative operation

Finally we check that each element of GL2(R) has an inverse in GL2(R). In other words, we
have to check that, whenever A is an invertible 2×2 matrix with real entries, its inverse matrix
A−1 is also an invertible 2× 2 matrix with real entries. But this is clear: the inverse of A−1 is
A.

(b) (5 points) Let SL2(Z) be the set of 2 × 2 matrices with integer entries and determinant 1. Prove
that SL2(Z) is a subgroup of GL2(R). This closely related to the so-called “modular group”, which
is one of the most interesting and important groups in number theory.

Solution: Let M,N ∈ SL2(Z) be arbitrary. By a proposition we showed in class (on 6/12/17),
it suffices to check that MN−1 ∈ SL2(Z). To see this, we recall the formula for the inverse of
a 2× 2 matrix: we can write N as

N =

(
a b
c d

)
for some integers a, b, c, d ∈ Z. Then the inverse of N is given by

N−1 =
1

detN

(
d −b
−c a

)
=

(
d −b
−c a

)
(Since N ∈ SL2(Z), we know that detN = 1). Thus N−1 is also a 2 × 2 matrix with integer
entries. Further, since

NN−1 = I,

we have
det(NN−1) = det I = 1

Since det(AB) = det(A) det(B) for any pair of matrices A and B, we see

det(N−1) = 1/ det(N) = 1,

again using the fact that detN = 1 be the definition of SL2(Z).

It’s clear from the definition of matrix multiplication that the product of two matrices with
integer entries also has integer entries. Thus MN−1 has integer entries. Further, det(MN−1) =
det(M) det(N−1) = 1 · 1 = 1. Thus MN−1 ∈ SL2(Z), as desired.

(c) (5 points) Let S =

{(
a b
0 c

) ∣∣∣∣ a, b, c ∈ R, ac 6= 0

}
. Prove that S is a subgroup of GL2(R).

Solution: Using the formula for the inverse of 2× 2 matrix, we compute:

(
a b
0 c

)
·
(
d e
0 f

)−1
=

(
a b
0 c

)
·

1

d
−e/df

0
1

f

 =

a

d

−ea
df

+
b

f

0
c

f

 ∈ S

By the characterization of subgroups that we discussed in class, this shows S is a subgroup of
GL2(R). Note that d 6= 0 and f 6= 0, since df 6= 0, so we’re allowed to divide by d and f above.
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(d) (5 points) Let T =

{(
1 a
0 1

) ∣∣∣∣ a ∈ R
}

. Prove that T is a subgroup of S.

Solution: Same as above, we compute:(
1 a
0 1

)
·
(

1 b
0 1

)−1
=

(
1 a
0 1

)
·
(

1 −b
0 1

)
=

(
1 a− b
0 1

)
∈ T

Note that T is actually abelian:(
1 a
0 1

)
·
(

1 b
0 1

)
=

(
1 b
0 1

)
·
(

1 a
0 1

)
=

(
1 a + b
0 1

)
This group is usually denoted U2(R), and its elements are called unipotent matrices.

3. (a) (2 points) Let G be a group. Prove that if a, x, y ∈ G and ax = ay, then x = y.

Solution: By definition of a group, a has an inverse a−1 ∈ G. Thus a−1(ax) = a−1(ay). By
the associativity property, we see that (a−1a)x = (a−1a)y. By definition of inverses, a−1a = e,
so we have ex = ey. Thus x = y.

(b) (2 points) Prove that the identity element of a group is unique. In other words, if G is a group,
and e, e′ ∈ G are elements such that eg = ge = g and e′g = ge′ = g for all g ∈ G, then e = e′.

Solution: ee′ = e, since e′ is an identity element of G. Also, ee′ = e′, since e is an identity
element of G. Thus e = ee′ = e′.

(c) (2 points) Prove that the inverse of a group element is unique. In other words, if G is a group, and
g, h, h′ ∈ G are elements such that

gh = hg = e

gh′ = h′g = e

then h = h′.

Solution: We have h(gh′) = he = h. But also h(gh′) = (hg)h′ = eh′ = h′. Thus h = hgh′ =
h′.

4. Are the following groups? If yes, prove it. If not, say why not

(a) (2 points) Z with the binary operation ? defined by a ? b = 2a + b

Solution: This is not a group since ? is not associative:

(a ? b) ? c = 2(2a + b) + c = 4a + 2b + c

whereas
a ? (b ? c) = 2a + 2b + c

and these are not the same as long as a 6= 0.

(b) (2 points) N under multiplication
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Solution: This is not a group since not every element of N has an inverse element in N. For

instance, the multaplicative inverse of 2 is
1

2
, but

1

2
6∈ N.

(c) (2 points) The set {1,−1} under multiplication.

Solution: This is a group: multiplication is indeed a binary operation on the set, 1 is the
identity element, multiplication is associative, and each element is its own inverse.

(d) (2 points) Z/15Z under addition

Solution: This is a group: if [a]15 and [b]15 are elements of Z/15Z, then [a] + [b] = [a + b] ∈
Z/15Z, so addition is indeed a binary operation. The identity element is [0] since, by definition
of addition of equivalence classes, [0] + [a] = [0 + a] = [a] for all [a] ∈ Z/15Z, and similarly
[a] + [0] = [a]. Addition of equivalence classes is associative:

([a] + [b]) + [c] = [a + b] + [c] = [(a + b) + c] = [a + (b + c)] = [a] + [b + c] = [a] + ([b] + [c])

Finally, the inverse of any element [a] ∈ Z/15Z is [−a] as [a] + [−a] = [−a] + [a] = [0].

(e) (2 points) Z/15Z under multiplication

Solution: This is not a group, as not every element has a multaplicative inverse modulo 15.
For instance, [0] can’t have a mulaplicative inverse, since [0] · [a] = [0] for all [a] ∈ Z/15Z.

(f) (2 points) M2×2(R), with the binary operation ?, defined by A ? B = AB −BA.

Solution: This isn’t a group for many reasons. One is that there’s no identity element (thanks
to James for pointing this out): if A ? E = E ? A = A, for some A,E ∈ M2×2(R), then
AE−EA = EA−AE, so 2AE = 2EA and EA = AE. But that means A?E = AE−EA = 0.
So if A 6= 0, then A ? E 6= E ? A for any E.

This operation turns out not be associative either; it satisfies the so-called Jacobi identity :

(A ? B) ? C −A ? (B ? C) = B ? (C ? A)

for all matrices A,B,C.

5. (5 points) Let (G, ·) and (H, ∗) be two groups. Show that G×H is a group, under the binary operation
? defined by

(g, h) ? (g′, h′) = (g · g′, h ∗ h′)

Solution: Let (g, h) and (g′, h′) be two elements of G×H. Then g · g′ ∈ G and h× h′ ∈ H since,
by defintion, · is a binary operation on G and ∗ is a binary operation on H. Thus (g, h) ? (g′, h′) =
(g · g′, h ∗ h′) ∈ G×H, so ? is indeed a binary operation.

By definition of a group, G has some identity element eG and H has some identity element eH .
Then (eG, eH) is the identity element of G×H: indeed, for all (g, h) ∈ G×H, we have:

(g, h) ? (eG, eH) = (g · eg, h ∗ eH) = (g, h),

(eG, eH) ? (g, h) = (eg · g, eH ∗ h) = (g, h)
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Also, we know that g has some inverse g−1 ∈ G and h has some inverse h−1inH. Thus, (g−1, h−1) ∈
G×H. We check:

(g, h) ? (g−1, h−1) = (g · g−1, h ∗ h−1) = (eG, eH)

(g−1, h−1) ? (g, h) = (g−1 · g, h−1 ∗ h) = (eG, eH)

Thus, (g, h)−1 = (g−1, h−1) ∈ G×H, so every element of G×H has an inverse.

Finally, let (g, h), (g′, h′), (g′′, h′′) ∈ G×H. Then:

(g, h) ? ((g′, h′) ? (g′′, h′′)) = (g, h) ? (g′ · g′′, h′ ∗ h′′)
= (g · (g′ · g′′), h ∗ (h′ ∗ h′′))
= ((g · g′) · g′′, (h ∗ h′) ∗ h′′) because · and ∗ are associative

= (g · g′, h ∗ h′) ? (g′′, h′′)

= ((g, h) ? (g′, h′)) ? (g′′, h′′)

So ? is an associative binary operation on G×H.

6. (5 points) Prove that cyclic groups are abelian

Solution: Let G be a cyclic group. That means there exists some element g ∈ G such that G = 〈g〉.
Let x, y ∈ G be arbitrary elements of G. Since G = 〈g〉, that means x, y ∈ 〈g〉. By definition, that
means there exist some integers i, j such that x = gi and y = gj . But this means that

x · y = gi · gj = gi+j = gj · gi = y · x

just using the exponent rules. This shows that G is abelian.

7. (a) (10 points) Let a, b ∈ N. Show that lcm(a, b) =
ab

gcd(a, b)
.

Solution: This is easier if we use prime factorizations: let p1, . . . , pn be all the distinct primes
appearing in the factorizations of a and b. Then there exist natural numbers ei, fi ∈ N such
that

a = pe11 · · · penn
and

b = pf11 · pfnn
Then

lcm(a, b) · gcd(a, b) = p
min(e1,f1)+max(e1,f1)
1 · · · pmin(en,fn)+max(en,fn)

n

Note that min(ei, fi) + max(ei, fi) = ei + fi for all i. Thus,

lcm(a, b) · gcd(a, b) = pe1+f1
1 · · · pen+fn

n = ab,

as desired.

There’s also way to prove this using Bezout’s lemma, but I have a thesis to write ¨̂

(b) (5 points) Let a, n ∈ N with n 6= 0. Prove that o ([a]) =
n

gcd(a, n)
in Z/nZ
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Solution: Note that n[a] = [0], so o([a]) <∞. Thus, there exists some integer k > 0 such that
o([a]) = k.

Since k[a] = [0], that means n | ka. In other words, ka is a common multiple of n and a. On the

other hand, if c > 0 is another common multiple of a and n, then
c

a
[a] = [c] = [0] in Z/nZ. By

the definition of o([a]), we must have k ≤ c

a
, and thus ka ≤ c

a
a = c. So we’ve just shown that

ka is the least common multiple of a and n. By part (a) above, we see that ka =
an

gcd(a, n)
, so

k =
n

gcd(a, n)
, as desired.

8. (5 points) Can a non-abelian group have an abelian subgroup? If yes, give an example. If not, prove
why not.

Solution: Yes: for instance, in problem 2, we saw that T is a subgroup of GL2(R). T is abelian
but GL2(R) is not.

9. (5 points) Let p be a prime number and let G be a group of order p. Prove that G is abelian.

Solution: Since #G = p > 1, G has an element that’s not the identity element, e. Let g ∈ G such
an element. By Lagrange’s theorem, we know that o(g) | #G, which means o(g) = 1 or o(g) = p.
Note that if o(g) = 1, that means, by definition, that g1 = e. But g1 is just g. Since g 6= e, we must
have o(g) = p. We also saw in class that o(g) = # 〈g〉, so # 〈g〉 = p. Since 〈g〉 ⊆ G and both of
these sets of the same size, we see that 〈g〉 = G. In other words, G is cyclic. By problem 6, cyclic
groups are always abelian, so G must be abelian.

10. (10 points) Let G be a group of order 4. Show that G is abelian. (Hint: we can write G = {e, a, b, c}
where e, a, b, c are all distinct. What can o(a) be? Break the problem up into cases) It turns out there
are only two different groups of order 4: Z/4Z and Z/2Z× Z/2Z.

Solution: Let G be a group of order 4. If G is cyclic, then G must be abelian by problem 6. So
suppose G is not cyclic. Then no element of G has order 4. By Lagrange’s theorem, each element
must then have order 1 or 2. Thus, for all a ∈ G, we have a2 = e. Now let a, b be arbitrary. Then
(ab)2 = abab = e. Multiplying by a on the left and by b on the right, we get a2bab2 = ab. But
a2 = b2 = e, so this means ba = ab, as desired.
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