Math 4400 Homework 5

Due: Friday, June 23rd, 2017
Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a note of who you worked with on each problem. Let me know if you find a typo, or you're stuck on any of the problems.

1. (5 points) Prove that multiplication of 2×2 matrices with real entries is associative.

Solution: This is just a simple, but tedious computation: we let L, M, N be three arbitrary 2×2 matrices with real entries. Then there exist real numbers $a, b, c, d, e, f, g, h, i, j, k, l \in \mathbb{R}$ such that

$$
L=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad M=\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right), \quad N=\left(\begin{array}{cc}
i & j \\
k & l
\end{array}\right)
$$

Then

$$
L \cdot M=\left(\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right)
$$

which means
$(L \cdot M) \cdot N=\left(\begin{array}{ll}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right) \cdot\left(\begin{array}{cc}i & j \\ k & l\end{array}\right)=\left(\begin{array}{ll}(a e+b g) i+(a f+b h) k & (a e+b g) j+(a f+b h) l \\ (c d+d g) i+(c f+d h) k & (c e+d g) j+(c f+d h) l\end{array}\right)$
Further,

$$
M \cdot N=\left(\begin{array}{ll}
e i+f k & e j+f l \\
g i+h k & g j+h l
\end{array}\right)
$$

which means
$L \cdot(M \cdot N)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot\left(\begin{array}{ll}e i+f k & e j+f l \\ g i+h k & g j+h l\end{array}\right)=\left(\begin{array}{ll}a(e i+f k)+b(g i+h k) & a(e j+f l)+b(g j+h l) \\ c(e i+f k)+d(g i+h k) & c(e j+f l)+d(g j+h l)\end{array}\right)$
We wish to show that $(L \cdot M) \cdot N=L \cdot(M \cdot N)$. So we just have to check the following equalities:

$$
\begin{aligned}
(a e+b g) i+(a f+b h) k & =a(e i+f k)+b(g i+h k) \\
(a e+b g) j+(a f+b h) l & =a(e j+f l)+b(g j+h l) \\
(c d+d g) i+(c f+d h) k & =c(e i+f k)+d(g i+h k) \\
(c e+d g) j+(c f+d h) l & =c(e j+f l)+d(g j+h l)
\end{aligned}
$$

which just follows from the associativity, distributivity, and commutativity properties of the real numbers.
2. (a) (5 points) Let $G L_{2}(\mathbb{R})$ be the set of invertible 2×2 matrices with real entries. Prove that $G L_{2}(\mathbb{R})$ is a group under multiplication

Solution: Let $A, B \in G L_{2}(\mathbb{R})$. Then, by definition A has an inverse matrix A^{-1} and B has an invnerse matrix B^{-1}. We note that

$$
(A B)\left(B^{-1} A^{-1}\right)=\left(B^{-1} A^{-1}\right) A B=I
$$

Where I is the identity matrix. Thus $A B$ is also an invertible 2×2 matrix with real entries. This shows multiplication is a binary operation on $G L_{2}(\mathbb{R})$.

Next, we have to check that $G L_{2}(\mathbb{R})$ has an identity element. Since I is invertible, we see that $I \in G L_{2}(\mathbb{R})$. Since

$$
I M=M I=M
$$

for all 2×2 matrices, we see that I is the identity element of $G L_{2}(\mathbb{R})$.
By problem 1, multiplication is an associative operation
Finally we check that each element of $G L_{2}(\mathbb{R})$ has an inverse in $G L_{2}(\mathbb{R})$. In other words, we have to check that, whenever A is an invertible 2×2 matrix with real entries, its inverse matrix A^{-1} is also an invertible 2×2 matrix with real entries. But this is clear: the inverse of A^{-1} is A.
(b) (5 points) Let $S L_{2}(\mathbb{Z})$ be the set of 2×2 matrices with integer entries and determinant 1 . Prove that $S L_{2}(\mathbb{Z})$ is a subgroup of $G L_{2}(\mathbb{R})$. This closely related to the so-called "modular group", which is one of the most interesting and important groups in number theory.

Solution: Let $M, N \in S L_{2}(\mathbb{Z})$ be arbitrary. By a proposition we showed in class (on $6 / 12 / 17$), it suffices to check that $M N^{-1} \in S L_{2}(\mathbb{Z})$. To see this, we recall the formula for the inverse of a 2×2 matrix: we can write N as

$$
N=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

for some integers $a, b, c, d \in \mathbb{Z}$. Then the inverse of N is given by

$$
N^{-1}=\frac{1}{\operatorname{det} N}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

(Since $N \in S L_{2}(\mathbb{Z})$, we know that $\operatorname{det} N=1$). Thus N^{-1} is also a 2×2 matrix with integer entries. Further, since

$$
N N^{-1}=I
$$

we have

$$
\operatorname{det}\left(N N^{-1}\right)=\operatorname{det} I=1
$$

Since $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for any pair of matrices A and B, we see

$$
\operatorname{det}\left(N^{-1}\right)=1 / \operatorname{det}(N)=1
$$

again using the fact that $\operatorname{det} N=1$ be the definition of $S L_{2}(\mathbb{Z})$.
It's clear from the definition of matrix multiplication that the product of two matrices with integer entries also has integer entries. Thus $M N^{-1}$ has integer entries. Further, $\operatorname{det}\left(M N^{-1}\right)=$ $\operatorname{det}(M) \operatorname{det}\left(N^{-1}\right)=1 \cdot 1=1$. Thus $M N^{-1} \in S L_{2}(\mathbb{Z})$, as desired.
(c) (5 points) Let $S=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}, a c \neq 0\right\}$. Prove that S is a subgroup of $G L_{2}(\mathbb{R})$.

Solution: Using the formula for the inverse of 2×2 matrix, we compute:

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \cdot\left(\begin{array}{ll}
d & e \\
0 & f
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a & b \\
0 & c
\end{array}\right) \cdot\left(\begin{array}{cc}
\frac{1}{d} & -e / d f \\
0 & \frac{1}{f}
\end{array}\right)=\left(\begin{array}{cc}
\frac{a}{d} & \frac{-e a}{d f}+\frac{b}{f} \\
0 & \frac{c}{f}
\end{array}\right) \in S
$$

By the characterization of subgroups that we discussed in class, this shows S is a subgroup of $G L_{2}(\mathbb{R})$. Note that $d \neq 0$ and $f \neq 0$, since $d f \neq 0$, so we're allowed to divide by d and f above.
(d) (5 points) Let $T=\left\{\left.\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}$. Prove that T is a subgroup of S.

Solution: Same as above, we compute:

$$
\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & -b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & a-b \\
0 & 1
\end{array}\right) \in T
$$

Note that T is actually abelian:

$$
\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & a+b \\
0 & 1
\end{array}\right)
$$

This group is usually denoted $U_{2}(\mathbb{R})$, and its elements are called unipotent matrices.
3. (a) (2 points) Let G be a group. Prove that if $a, x, y \in G$ and $a x=a y$, then $x=y$.

Solution: By definition of a group, a has an inverse $a^{-1} \in G$. Thus $a^{-1}(a x)=a^{-1}(a y)$. By the associativity property, we see that $\left(a^{-1} a\right) x=\left(a^{-1} a\right) y$. By definition of inverses, $a^{-1} a=e$, so we have ex=ey. Thus $x=y$.
(b) (2 points) Prove that the identity element of a group is unique. In other words, if G is a group, and $e, e^{\prime} \in G$ are elements such that $e g=g e=g$ and $e^{\prime} g=g e^{\prime}=g$ for all $g \in G$, then $e=e^{\prime}$.

Solution: $e e^{\prime}=e$, since e^{\prime} is an identity element of G. Also, $e e^{\prime}=e^{\prime}$, since e is an identity element of G. Thus $e=e e^{\prime}=e^{\prime}$.
(c) (2 points) Prove that the inverse of a group element is unique. In other words, if G is a group, and $g, h, h^{\prime} \in G$ are elements such that

$$
\begin{aligned}
g h & =h g=e \\
g h^{\prime} & =h^{\prime} g=e
\end{aligned}
$$

then $h=h^{\prime}$.

Solution: We have $h\left(g h^{\prime}\right)=h e=h$. But also $h\left(g h^{\prime}\right)=(h g) h^{\prime}=e h^{\prime}=h^{\prime}$. Thus $h=h g h^{\prime}=$ h^{\prime}.
4. Are the following groups? If yes, prove it. If not, say why not
(a) (2 points) \mathbb{Z} with the binary operation \star defined by $a \star b=2 a+b$

Solution: This is not a group since \star is not associative:

$$
(a \star b) \star c=2(2 a+b)+c=4 a+2 b+c
$$

whereas

$$
a \star(b \star c)=2 a+2 b+c
$$

and these are not the same as long as $a \neq 0$.
(b) (2 points) \mathbb{N} under multiplication

Solution: This is not a group since not every element of \mathbb{N} has an inverse element in \mathbb{N}. For instance, the multaplicative inverse of 2 is $\frac{1}{2}$, but $\frac{1}{2} \notin \mathbb{N}$.
(c) (2 points) The set $\{1,-1\}$ under multiplication.

Solution: This is a group: multiplication is indeed a binary operation on the set, 1 is the identity element, multiplication is associative, and each element is its own inverse.
(d) (2 points) $\mathbb{Z} / 15 \mathbb{Z}$ under addition

Solution: This is a group: if $[a]_{15}$ and $[b]_{15}$ are elements of $\mathbb{Z} / 15 \mathbb{Z}$, then $[a]+[b]=[a+b] \in$ $\mathbb{Z} / 15 \mathbb{Z}$, so addition is indeed a binary operation. The identity element is [0] since, by definition of addition of equivalence classes, $[0]+[a]=[0+a]=[a]$ for all $[a] \in \mathbb{Z} / 15 \mathbb{Z}$, and similarly $[a]+[0]=[a]$. Addition of equivalence classes is associative:

$$
([a]+[b])+[c]=[a+b]+[c]=[(a+b)+c]=[a+(b+c)]=[a]+[b+c]=[a]+([b]+[c])
$$

Finally, the inverse of any element $[a] \in \mathbb{Z} / 15 \mathbb{Z}$ is $[-a]$ as $[a]+[-a]=[-a]+[a]=[0]$.
(e) (2 points) $\mathbb{Z} / 15 \mathbb{Z}$ under multiplication

Solution: This is not a group, as not every element has a multaplicative inverse modulo 15 . For instance, $[0]$ can't have a mulaplicative inverse, since $[0] \cdot[a]=[0]$ for all $[a] \in \mathbb{Z} / 15 \mathbb{Z}$.
(f) (2 points) $M_{2 \times 2}(\mathbb{R})$, with the binary operation \star, defined by $A \star B=A B-B A$.

Solution: This isn't a group for many reasons. One is that there's no identity element (thanks to James for pointing this out): if $A \star E=E \star A=A$, for some $A, E \in M_{2 \times 2}(\mathbb{R})$, then $A E-E A=E A-A E$, so $2 A E=2 E A$ and $E A=A E$. But that means $A \star E=A E-E A=0$. So if $A \neq 0$, then $A \star E \neq E \star A$ for any E.
This operation turns out not be associative either; it satisfies the so-called Jacobi identity:

$$
(A \star B) \star C-A \star(B \star C)=B \star(C \star A)
$$

for all matrices A, B, C.
5. (5 points) Let (G, \cdot) and $(H, *)$ be two groups. Show that $G \times H$ is a group, under the binary operation \star defined by

$$
(g, h) \star\left(g^{\prime}, h^{\prime}\right)=\left(g \cdot g^{\prime}, h * h^{\prime}\right)
$$

Solution: Let (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ be two elements of $G \times H$. Then $g \cdot g^{\prime} \in G$ and $h \times h^{\prime} \in H$ since, by defintion, \cdot is a binary operation on G and $*$ is a binary operation on H. Thus $(g, h) \star\left(g^{\prime}, h^{\prime}\right)=$ $\left(g \cdot g^{\prime}, h * h^{\prime}\right) \in G \times H$, so \star is indeed a binary operation.
By definition of a group, G has some identity element e_{G} and H has some identity element e_{H}. Then $\left(e_{G}, e_{H}\right)$ is the identity element of $G \times H$: indeed, for all $(g, h) \in G \times H$, we have:

$$
\begin{aligned}
& (g, h) \star\left(e_{G}, e_{H}\right)=\left(g \cdot e_{g}, h * e_{H}\right)=(g, h) \\
& \left(e_{G}, e_{H}\right) \star(g, h)=\left(e_{g} \cdot g, e_{H} * h\right)=(g, h)
\end{aligned}
$$

Also, we know that g has some inverse $g^{-1} \in G$ and h has some inverse h^{-1} in H. Thus, $\left(g^{-1}, h^{-1}\right) \in$ $G \times H$. We check:

$$
\begin{aligned}
& (g, h) \star\left(g^{-1}, h^{-1}\right)=\left(g \cdot g^{-1}, h * h^{-1}\right)=\left(e_{G}, e_{H}\right) \\
& \left(g^{-1}, h^{-1}\right) \star(g, h)=\left(g^{-1} \cdot g, h^{-1} * h\right)=\left(e_{G}, e_{H}\right)
\end{aligned}
$$

Thus, $(g, h)^{-1}=\left(g^{-1}, h^{-1}\right) \in G \times H$, so every element of $G \times H$ has an inverse.
Finally, let $(g, h),\left(g^{\prime}, h^{\prime}\right),\left(g^{\prime \prime}, h^{\prime \prime}\right) \in G \times H$. Then:

$$
\begin{aligned}
(g, h) \star\left(\left(g^{\prime}, h^{\prime}\right) \star\left(g^{\prime \prime}, h^{\prime \prime}\right)\right) & =(g, h) \star\left(g^{\prime} \cdot g^{\prime \prime}, h^{\prime} * h^{\prime \prime}\right) \\
& =\left(g \cdot\left(g^{\prime} \cdot g^{\prime \prime}\right), h *\left(h^{\prime} * h^{\prime \prime}\right)\right) \\
& =\left(\left(g \cdot g^{\prime}\right) \cdot g^{\prime \prime},\left(h * h^{\prime}\right) * h^{\prime \prime}\right) \text { because } \cdot \text { and } * \text { are associative } \\
& =\left(g \cdot g^{\prime}, h * h^{\prime}\right) \star\left(g^{\prime \prime}, h^{\prime \prime}\right) \\
& =\left((g, h) \star\left(g^{\prime}, h^{\prime}\right)\right) \star\left(g^{\prime \prime}, h^{\prime \prime}\right)
\end{aligned}
$$

So \star is an associative binary operation on $G \times H$.
6. (5 points) Prove that cyclic groups are abelian

Solution: Let G be a cyclic group. That means there exists some element $g \in G$ such that $G=\langle g\rangle$. Let $x, y \in G$ be arbitrary elements of G. Since $G=\langle g\rangle$, that means $x, y \in\langle g\rangle$. By definition, that means there exist some integers i, j such that $x=g^{i}$ and $y=g^{j}$. But this means that

$$
x \cdot y=g^{i} \cdot g^{j}=g^{i+j}=g^{j} \cdot g^{i}=y \cdot x
$$

just using the exponent rules. This shows that G is abelian.
7. (a) (10 points) Let $a, b \in \mathbb{N}$. Show that $\operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}$.

Solution: This is easier if we use prime factorizations: let p_{1}, \ldots, p_{n} be all the distinct primes appearing in the factorizations of a and b. Then there exist natural numbers $e_{i}, f_{i} \in \mathbb{N}$ such that

$$
a=p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}
$$

and

$$
b=p_{1}^{f_{1}} \cdot p_{n}^{f_{n}}
$$

Then

$$
\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=p_{1}^{\min \left(e_{1}, f_{1}\right)+\max \left(e_{1}, f_{1}\right)} \cdots p_{n}^{\min \left(e_{n}, f_{n}\right)+\max \left(e_{n}, f_{n}\right)}
$$

Note that $\min \left(e_{i}, f_{i}\right)+\max \left(e_{i}, f_{i}\right)=e_{i}+f_{i}$ for all i. Thus,

$$
\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=p_{1}^{e_{1}+f_{1}} \ldots p_{n}^{e_{n}+f_{n}}=a b,
$$

as desired.
There's also way to prove this using Bezout's lemma, but I have a thesis to write \because
(b) (5 points) Let $a, n \in \mathbb{N}$ with $n \neq 0$. Prove that $o([a])=\frac{n}{\operatorname{gcd}(a, n)}$ in $\mathbb{Z} / n \mathbb{Z}$

Solution: Note that $n[a]=[0]$, so $o([a])<\infty$. Thus, there exists some integer $k>0$ such that $o([a])=k$.
Since $k[a]=[0]$, that means $n \mid k a$. In other words, $k a$ is a common multiple of n and a. On the other hand, if $c>0$ is another common multiple of a and n, then $\frac{c}{a}[a]=[c]=[0]$ in $\mathbb{Z} / n \mathbb{Z}$. By the definition of $o([a])$, we must have $k \leq \frac{c}{a}$, and thus $k a \leq \frac{c}{a} a=c$. So we've just shown that $k a$ is the least common multiple of a and n. By part (a) above, we see that $k a=\frac{a n}{\operatorname{gcd}(a, n)}$, so $k=\frac{n}{\operatorname{gcd}(a, n)}$, as desired.
8. (5 points) Can a non-abelian group have an abelian subgroup? If yes, give an example. If not, prove why not.

Solution: Yes: for instance, in problem 2, we saw that T is a subgroup of $G L_{2}(\mathbb{R})$. T is abelian but $G L_{2}(\mathbb{R})$ is not.
9. (5 points) Let p be a prime number and let G be a group of order p. Prove that G is abelian.

Solution: Since $\# G=p>1, G$ has an element that's not the identity element, e. Let $g \in G$ such an element. By Lagrange's theorem, we know that $o(g) \mid \# G$, which means $o(g)=1$ or $o(g)=p$. Note that if $o(g)=1$, that means, by definition, that $g^{1}=e$. But g^{1} is just g. Since $g \neq e$, we must have $o(g)=p$. We also saw in class that $o(g)=\#\langle g\rangle$, so $\#\langle g\rangle=p$. Since $\langle g\rangle \subseteq G$ and both of these sets of the same size, we see that $\langle g\rangle=G$. In other words, G is cyclic. By problem 6 , cyclic groups are always abelian, so G must be abelian.
10. (10 points) Let G be a group of order 4. Show that G is abelian. (Hint: we can write $G=\{e, a, b, c\}$ where e, a, b, c are all distinct. What can $o(a)$ be? Break the problem up into cases) It turns out there are only two different groups of order $4: \mathbb{Z} / 4 \mathbb{Z}$ and $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Solution: Let G be a group of order 4. If G is cyclic, then G must be abelian by problem 6. So suppose G is not cyclic. Then no element of G has order 4. By Lagrange's theorem, each element must then have order 1 or 2 . Thus, for all $a \in G$, we have $a^{2}=e$. Now let a, b be arbitrary. Then $(a b)^{2}=a b a b=e$. Multiplying by a on the left and by b on the right, we get $a^{2} b a b^{2}=a b$. But $a^{2}=b^{2}=e$, so this means $b a=a b$, as desired.

