Math 4400 Homework 5

Due: Friday, June 23rd, 2017
Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a note of who you worked with on each problem. Let me know if you find a typo, or you're stuck on any of the problems.

1. (5 points) Prove that multiplication of 2×2 matrices with real entries is associative.
2. (a) (5 points) Let $G L_{2}(\mathbb{R})$ be the set of invertible 2×2 matrices with real entries. Prove that $G L_{2}(\mathbb{R})$ is a group under multiplication
(b) (5 points) Let $S L_{2}(\mathbb{Z})$ be the set of 2×2 matrices with integer entries and determinant 1. Prove that $S L_{2}(\mathbb{Z})$ is a subgroup of $G L_{2}(\mathbb{R})$. This closely related to the so-called "modular group", which is one of the most interesting and important groups in number theory.
(c) (5 points) Let $S=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}, a c \neq 0\right\}$. Prove that S is a subgroup of $G L_{2}(\mathbb{R})$.
(d) (5 points) Let $T=\left\{\left.\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}$. Prove that T is a subgroup of S.
3. (a) (2 points) Let G be a group. Prove that if $a, x, y \in G$ and $a x=a y$, then $x=y$.
(b) (2 points) Prove that the identity element of a group is unique. In other words, if G is a group, and $e, e^{\prime} \in G$ are elements such that $e g=g e=g$ and $e^{\prime} g=g e^{\prime}=g$ for all $g \in G$, then $e=e^{\prime}$.
(c) (2 points) Prove that the inverse of a group element is unique. In other words, if G is a group, and $g, h, h^{\prime} \in G$ are elements such that

$$
\begin{aligned}
g h & =h g=e \\
g h^{\prime} & =h^{\prime} g=e
\end{aligned}
$$

then $h=h^{\prime}$.
4. Are the following groups? If yes, prove it. If not, say why not
(a) (2 points) \mathbb{Z} with the binary operation \star defined by $a \star b=2 a+b$
(b) (2 points) \mathbb{N} under multiplication
(c) (2 points) The set $\{1,-1\}$ under multiplication.
(d) (2 points) $\mathbb{Z} / 15 \mathbb{Z}$ under addition
(e) (2 points) $\mathbb{Z} / 15 \mathbb{Z}$ under multiplication
(f) (2 points) $M_{2 \times 2}(\mathbb{R})$, with the binary operation \star, defined by $A \star B=A B-B A$.
5. (5 points) Let (G, \cdot) and $(H, *)$ be two groups. Show that $G \times H$ is a group, under the binary operation \star defined by

$$
(g, h) \star\left(g^{\prime}, h^{\prime}\right)=\left(g \cdot g^{\prime}, h * h^{\prime}\right)
$$

6. (5 points) Prove that cyclic groups are abelian
7. (a) (10 points) Let $a, b \in \mathbb{N}$. Show that $\operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}$.
(b) (5 points) Let $a, n \in \mathbb{N}$ with $n \neq 0$. Prove that $o([a])=\frac{n}{\operatorname{gcd}(a, n)}$ in $\mathbb{Z} / n \mathbb{Z}$
8. (5 points) Can a non-abelian group have an abelian subgroup? If yes, give an example. If not, prove why not.
9. (5 points) Let p be a prime number and let G be a group of order p. Prove that G is abelian.
10. (10 points) Let G be a group of order 4. Show that G is abelian. (Hint: we can write $G=\{e, a, b, c\}$ where e, a, b, c are all distinct. What can $o(a)$ be? Break the problem up into cases) It turns out there are only two different groups of order $4: \mathbb{Z} / 4 \mathbb{Z}$ and $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
