Math 4400 Homework 5

Due: Friday, June 23rd, 2017

Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a note of who you worked with on each problem. Let me know if you find a typo, or you're stuck on any of the problems.

- 1. (5 points) Prove that multiplication of 2×2 matrices with real entries is associative.
- 2. (a) (5 points) Let $GL_2(\mathbb{R})$ be the set of invertible 2×2 matrices with real entries. Prove that $GL_2(\mathbb{R})$ is a group under multiplication
 - (b) (5 points) Let $SL_2(\mathbb{Z})$ be the set of 2×2 matrices with integer entries and determinant 1. Prove that $SL_2(\mathbb{Z})$ is a subgroup of $GL_2(\mathbb{R})$. This closely related to the so-called "modular group", which is one of the most interesting and important groups in number theory.

(c) (5 points) Let
$$S = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{R}, ac \neq 0 \right\}$$
. Prove that S is a subgroup of $GL_2(\mathbb{R})$.

(d) (5 points) Let
$$T = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{R} \right\}$$
. Prove that T is a subgroup of S .

- 3. (a) (2 points) Let G be a group. Prove that if $a, x, y \in G$ and ax = ay, then x = y.
 - (b) (2 points) Prove that the identity element of a group is unique. In other words, if G is a group, and $e, e' \in G$ are elements such that eg = ge = g and e'g = ge' = g for all $g \in G$, then e = e'.
 - (c) (2 points) Prove that the inverse of a group element is unique. In other words, if G is a group, and $g, h, h' \in G$ are elements such that

$$gh = hg = e$$
$$gh' = h'g = e$$

then h = h'.

- 4. Are the following groups? If yes, prove it. If not, say why not
 - (a) (2 points) \mathbb{Z} with the binary operation \star defined by $a \star b = 2a + b$
 - (b) (2 points) \mathbb{N} under multiplication
 - (c) (2 points) The set $\{1, -1\}$ under multiplication.
 - (d) (2 points) $\mathbb{Z}/15\mathbb{Z}$ under addition
 - (e) (2 points) $\mathbb{Z}/15\mathbb{Z}$ under multiplication
 - (f) (2 points) $M_{2\times 2}(\mathbb{R})$, with the binary operation \star , defined by $A \star B = AB BA$.
- 5. (5 points) Let (G, \cdot) and (H, *) be two groups. Show that $G \times H$ is a group, under the binary operation \star defined by

$$(g,h) \star (g',h') = (g \cdot g',h \ast h')$$

- 6. (5 points) Prove that cyclic groups are abelian
- 7. (a) (10 points) Let $a, b \in \mathbb{N}$. Show that $\operatorname{lcm}(a, b) = \frac{ab}{\operatorname{gcd}(a, b)}$. (b) (5 points) Let $a, n \in \mathbb{N}$ with $n \neq 0$. Prove that $o([a]) = \frac{n}{\operatorname{gcd}(a, n)}$ in $\mathbb{Z}/n\mathbb{Z}$
- 8. (5 points) Can a non-abelian group have an abelian subgroup? If yes, give an example. If not, prove why not.
- 9. (5 points) Let p be a prime number and let G be a group of order p. Prove that G is abelian.
- 10. (10 points) Let G be a group of order 4. Show that G is abelian. (Hint: we can write $G = \{e, a, b, c\}$ where e, a, b, c are all distinct. What can o(a) be? Break the problem up into cases) It turns out there are only two different groups of order 4: $\mathbb{Z}/4\mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.