
Math 4400 Homework 4
Due: Monday, June 12th, 2017

Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a
note of who you worked with on each problem. Let me know if you find a typo, or you’re stuck on any of
the problems.

1. Let a, b ∈ Z be nonzero. Then a and b can both be factored into primes. Let p1, . . . , pn be all of the
distinct primes appearing in the factorizations of either a or b. It follows from uniqueness of factorization
that there exist unique numbers e1, . . . , en ∈ N and f1, . . . , fn ∈ N such that a = pe11 pe22 · · · penn and

b = pf11 pf22 · · · pfnn (remember that N includes 0)

For example, if a = 12 and b = 28 then a = 2 ·2 ·3 and b = 2 ·2 ·7. Then we can set p1 = 2, p2 = 3, p3 = 7,
and a = 22 · 31 · 70, whereas b = 22 · 30 · 71.

(a) (10 points) Prove that gcd(a, b) = p
min(e1,f1)
1 p

min(e2,f2)
2 · · · pmin(en,fn)

n . (Hint: start by showing that
if c is a common factor of a and b, then there exist some integers h1, . . . , hn ≥ 0 such that c =
ph1
1 · · · phn

n .)

Solution: Let c be a common divisor of a and b. There exist unique primes q1, . . . , qm ∈ Z
and integers g1, . . . , gm > 0 such that c = qg11 · · · qgmm . Then for all i with 1 ≤ i ≤ m, qi | a.
Since qi is prime, that means that qi | pj for some j with 1 ≤ j ≤ m. But since pj is prime,
that means qi = pj . This shows that each prime appearing in the factorization of c is in the

set {p1, . . . , pm}. Thus there are some integers h1, . . . , hm ∈ N such that c = ph1
1 · · · phm

m .

Next we’ll show that hi ≤ min(ei, fi) for each i. To see this, suppose h > min(ei, fi). If
min(ei, fi) = ei, then, since c | a, there is some k ∈ Z such that ck = a. In terms of our prime
factorizations, this means

ph1
1 · · · phm

m · k = pe11 pe22 · · · penn
Dividing each side by pei , we get

ph1
1 · · · p

hi−ei
i · · · phm

m · k = pe11 pe22 · p
ei−1

i−1 p
ei+1

i+1 · · · p
en
n

But hi−ei ≥ 1, so pi divides the left-hand side and not the right-hand side. The same argument
works if min(ei, fi) = fi: just replace a with b. Thus hi ≤ min(ei, fi).

Further, we see that p
min(e1,f1)
1 p

min(e2,f2)
2 · · · pmin(en,fn)

n is a common divisor of a and b. Indeed,

p
min(e1,f1)
1 p

min(e2,f2)
2 · · · pmin(en,fn)

n · pe1−min(e1,f1)
1 p

e2−min(e2,f2)
2 · · · pen−min(en,fn)

n = a,

and

p
min(e1,f1)
1 p

min(e2,f2)
2 · · · pmin(en,fn)

n · pf1−min(e1,f1)
1 p

f2−min(e2,f2)
2 · · · pfn−min(en,fn)

n = b.

Further, ei −min(ei, fi) ≥ 0 for all i, so

p
e1−min(e1,f1)
1 p

e2−min(e2,f2)
2 · · · pen−min(en,fn)

n

is indeed an integer. Similarly for

p
f1−min(e1,f1)
1 p

f2−min(e2,f2)
2 · · · pfn−min(en,fn)

n

Since hi ≤ min(ei, fi) for all i, we see that

c ≤ p
min(e1,f1)
1 p

min(e2,f2)
2 · · · pmin(en,fn)

n

This completes the proof.



(b) (5 points) Can you come up with a similar formula for lcm(a, b)? You don’t have to prove it’s true
in general, but you should show that your formula works for at least two different examples.

Solution: The correct formula is,

lcm(a, b) = p
max(e1,f1)
1 p

max(e2,f2)
2 · · · pmax(en,fn)

n

2. (10 points) Find all the incongruent solutions to x37 − x ≡ 0 mod 7

Solution: First, note that x ≡ 0 is a solution. Further, if x 6≡ 0, then x37 ≡ x by Fermat’s little
theorem, since 37 = 6 · 6 + 1. Thus, for all x 6≡ 0, we have x37 − x ≡ x − x ≡ 0. So every
integer is a solution to x37− x ≡ 0 mod 7. In particular, a complete list of incongruent solutions is
0, 1, 2, 3, 4, 5, 6.

3. (10 points) Find ϕ(600) and use that to compute 7332 mod 600, i.e. find an integer x with 0 ≤ x < 600
such that 7332 ≡ x mod 600.

Solution: The prime factorization of 600 is 23 · 3 · 52, so

ϕ(600) = 600

(
1− 1

2

)(
1− 1

3

)(
1− 1

5

)
= 160

Note also that gcd(600, 7) = 1 (this is clear from the prime factorization of 600 and problem 1).
Thus 7332 ≡ 72·160+2 ≡ 72 ≡ 49.

4. (10 points) Use the Euclidean Algorithm to compute the multiplicative inverse of 131 modulo 1979. Use
this to solve the congruence, 131x ≡ 11 mod 1979

Solution: We perform the Euclidean algorithm on 131 and 1979:

1979 = 15 · 131 + 14

131 = 9 · 14 + 5

14 = 2 · 5 + 4

5 = 1 · 4 + 1

4 = 4 · 1

Then we compute:

5− 1 · 4 = 1

5− 1 · (14− 2 · 5) = 1

3 · 5− 1 · 14 = 1

3 · (131− 9 · 14)− 1 · 14 = 1

3 · 131− 28 · 14 = 1

3 · 131− 28 (1979− 15 · 131) = 1

423 · 131− 28 · 1979 = 1
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Thus, 423 · 131 ≡ 1 mod 1979, so 423 is the inverse of 131 modulo 1979.

To solve the equation, we compute:

131x ≡ 11 mod 1979

⇔423 · 131x ≡ 423 · 11 mod 1979

⇔1 · x ≡ 4653 mod 1979

So x ≡ 4653 mod 1979. Or, to simplify: x ≡ 695 mod 1979
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