Math 4400 Homework 4

Due: Monday, June 12th, 2017
Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a note of who you worked with on each problem. Let me know if you find a typo, or you're stuck on any of the problems.

1. Let $a, b \in \mathbb{Z}$ be nonzero. Then a and b can both be factored into primes. Let p_{1}, \ldots, p_{n} be all of the distinct primes appearing in the factorizations of either a or b. It follows from uniqueness of factorization that there exist unique numbers $e_{1}, \ldots, e_{n} \in \mathbb{N}$ and $f_{1}, \ldots, f_{n} \in \mathbb{N}$ such that $a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}$ and $b=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{n}^{f_{n}}$ (remember that \mathbb{N} includes 0)
For example, if $a=12$ and $b=28$ then $a=2 \cdot 2 \cdot 3$ and $b=2 \cdot 2 \cdot 7$. Then we can set $p_{1}=2, p_{2}=3, p_{3}=7$, and $a=2^{2} \cdot 3^{1} \cdot 7^{0}$, whereas $b=2^{2} \cdot 3^{0} \cdot 7^{1}$.
(a) (10 points) Prove that $\operatorname{gcd}(a, b)=p_{1}^{\min \left(e_{1}, f_{1}\right)} p_{2}^{\min \left(e_{2}, f_{2}\right)} \cdots p_{n}^{\min \left(e_{n}, f_{n}\right)}$. (Hint: start by showing that if c is a common factor of a and b, then there exist some integers $h_{1}, \ldots, h_{n} \geq 0$ such that $c=$ $\left.p_{1}^{h_{1}} \cdots p_{n}^{h_{n}}.\right)$

Solution: Let c be a common divisor of a and b. There exist unique primes $q_{1}, \ldots, q_{m} \in \mathbb{Z}$ and integers $g_{1}, \ldots, g_{m}>0$ such that $c=q_{1}^{g_{1}} \cdots q_{m}^{g_{m}}$. Then for all i with $1 \leq i \leq m, q_{i} \mid a$. Since q_{i} is prime, that means that $q_{i} \mid p_{j}$ for some j with $1 \leq j \leq m$. But since p_{j} is prime, that means $q_{i}=p_{j}$. This shows that each prime appearing in the factorization of c is in the set $\left\{p_{1}, \ldots, p_{m}\right\}$. Thus there are some integers $h_{1}, \ldots, h_{m} \in \mathbb{N}$ such that $c=p_{1}^{h_{1}} \cdots p_{m}^{h_{m}}$.
Next we'll show that $h_{i} \leq \min \left(e_{i}, f_{i}\right)$ for each i. To see this, suppose $h>\min \left(e_{i}, f_{i}\right)$. If $\min \left(e_{i}, f_{i}\right)=e_{i}$, then, since $c \mid a$, there is some $k \in \mathbb{Z}$ such that $c k=a$. In terms of our prime factorizations, this means

$$
p_{1}^{h_{1}} \cdots p_{m}^{h_{m}} \cdot k=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}
$$

Dividing each side by $p^{e_{i}}$, we get

$$
p_{1}^{h_{1}} \cdots p_{i}^{h_{i}-e_{i}} \cdots p_{m}^{h_{m}} \cdot k=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdot p_{i-1}^{e_{i-1}} p_{i+1}^{e_{i+1}} \cdots p_{n}^{e_{n}}
$$

But $h_{i}-e_{i} \geq 1$, so p_{i} divides the left-hand side and not the right-hand side. The same argument works if $\min \left(e_{i}, f_{i}\right)=f_{i}$: just replace a with b. Thus $h_{i} \leq \min \left(e_{i}, f_{i}\right)$.
Further, we see that $p_{1}^{\min \left(e_{1}, f_{1}\right)} p_{2}^{\min \left(e_{2}, f_{2}\right)} \cdots p_{n}^{\min \left(e_{n}, f_{n}\right)}$ is a common divisor of a and b. Indeed,

$$
p_{1}^{\min \left(e_{1}, f_{1}\right)} p_{2}^{\min \left(e_{2}, f_{2}\right)} \cdots p_{n}^{\min \left(e_{n}, f_{n}\right)} \cdot p_{1}^{e_{1}-\min \left(e_{1}, f_{1}\right)} p_{2}^{e_{2}-\min \left(e_{2}, f_{2}\right)} \cdots p_{n}^{e_{n}-\min \left(e_{n}, f_{n}\right)}=a
$$

and

$$
p_{1}^{\min \left(e_{1}, f_{1}\right)} p_{2}^{\min \left(e_{2}, f_{2}\right)} \cdots p_{n}^{\min \left(e_{n}, f_{n}\right)} \cdot p_{1}^{f_{1}-\min \left(e_{1}, f_{1}\right)} p_{2}^{f_{2}-\min \left(e_{2}, f_{2}\right)} \cdots p_{n}^{f_{n}-\min \left(e_{n}, f_{n}\right)}=b .
$$

Further, $e_{i}-\min \left(e_{i}, f_{i}\right) \geq 0$ for all i, so

$$
p_{1}^{e_{1}-\min \left(e_{1}, f_{1}\right)} p_{2}^{e_{2}-\min \left(e_{2}, f_{2}\right)} \cdots p_{n}^{e_{n}-\min \left(e_{n}, f_{n}\right)}
$$

is indeed an integer. Similarly for

$$
p_{1}^{f_{1}-\min \left(e_{1}, f_{1}\right)} p_{2}^{f_{2}-\min \left(e_{2}, f_{2}\right)} \cdots p_{n}^{f_{n}-\min \left(e_{n}, f_{n}\right)}
$$

Since $h_{i} \leq \min \left(e_{i}, f_{i}\right)$ for all i, we see that

$$
c \leq p_{1}^{\min \left(e_{1}, f_{1}\right)} p_{2}^{\min \left(e_{2}, f_{2}\right)} \cdots p_{n}^{\min \left(e_{n}, f_{n}\right)}
$$

This completes the proof.
(b) (5 points) Can you come up with a similar formula for $\operatorname{lcm}(a, b)$? You don't have to prove it's true in general, but you should show that your formula works for at least two different examples.

Solution: The correct formula is,

$$
\operatorname{lcm}(a, b)=p_{1}^{\max \left(e_{1}, f_{1}\right)} p_{2}^{\max \left(e_{2}, f_{2}\right)} \cdots p_{n}^{\max \left(e_{n}, f_{n}\right)}
$$

2. (10 points) Find all the incongruent solutions to $x^{37}-x \equiv 0 \bmod 7$

Solution: First, note that $x \equiv 0$ is a solution. Further, if $x \not \equiv 0$, then $x^{37} \equiv x$ by Fermat's little theorem, since $37=6 \cdot 6+1$. Thus, for all $x \not \equiv 0$, we have $x^{37}-x \equiv x-x \equiv 0$. So every integer is a solution to $x^{37}-x \equiv 0 \bmod 7$. In particular, a complete list of incongruent solutions is $0,1,2,3,4,5,6$.
3. (10 points) Find $\varphi(600)$ and use that to compute $7^{332} \bmod 600$, i.e. find an integer x with $0 \leq x<600$ such that $7^{332} \equiv x \bmod 600$.

Solution: The prime factorization of 600 is $2^{3} \cdot 3 \cdot 5^{2}$, so

$$
\varphi(600)=600\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)=160
$$

Note also that $\operatorname{gcd}(600,7)=1$ (this is clear from the prime factorization of 600 and problem 1). Thus $7^{332} \equiv 7^{2 \cdot 160+2} \equiv 7^{2} \equiv 49$.
4. (10 points) Use the Euclidean Algorithm to compute the multiplicative inverse of 131 modulo 1979. Use this to solve the congruence, $131 x \equiv 11 \bmod 1979$

Solution: We perform the Euclidean algorithm on 131 and 1979:

$$
\begin{aligned}
1979 & =15 \cdot 131+14 \\
131 & =9 \cdot 14+5 \\
14 & =2 \cdot 5+4 \\
5 & =1 \cdot 4+1 \\
4 & =4 \cdot 1
\end{aligned}
$$

Then we compute:

$$
\begin{aligned}
5-1 \cdot 4 & =1 \\
5-1 \cdot(14-2 \cdot 5) & =1 \\
3 \cdot 5-1 \cdot 14 & =1 \\
3 \cdot(131-9 \cdot 14)-1 \cdot 14 & =1 \\
3 \cdot 131-28 \cdot 14 & =1 \\
3 \cdot 131-28(1979-15 \cdot 131) & =1 \\
423 \cdot 131-28 \cdot 1979 & =1
\end{aligned}
$$

Thus, $423 \cdot 131 \equiv 1 \bmod 1979$, so 423 is the inverse of 131 modulo 1979 .
To solve the equation, we compute:

$$
\begin{aligned}
& 131 x \equiv 11 \quad \bmod 1979 \\
\Leftrightarrow & 423 \cdot 131 x \equiv 423 \cdot 11 \quad \bmod 1979 \\
\Leftrightarrow & 1 \cdot x \equiv 4653 \quad \bmod 1979
\end{aligned}
$$

So $x \equiv 4653 \bmod 1979$. Or, to simplify: $x \equiv 695 \bmod 1979$

