Math 4400 Homework 4

Due: Monday, June 12th, 2017
Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a note of who you worked with on each problem. Let me know if you find a typo, or you're stuck on any of the problems.

1. Let $a, b \in \mathbb{Z}$ be nonzero. Then a and b can both be factored into primes. Let p_{1}, \ldots, p_{n} be all of the distinct primes appearing in the factorizations of either a or b. It follows from uniqueness of factorization that there exist unique numbers $e_{1}, \ldots, e_{n} \in \mathbb{N}$ and $f_{1}, \ldots, f_{n} \in \mathbb{N}$ such that $a=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}$ and $b=p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{n}^{f_{n}}$ (remember that \mathbb{N} includes 0$)$
For example, if $a=12$ and $b=28$ then $a=2 \cdot 2 \cdot 3$ and $b=2 \cdot 2 \cdot 7$. Then we can set $p_{1}=2, p_{2}=3, p_{3}=7$, and $a=2^{2} \cdot 3^{1} \cdot 7^{0}$, whereas $b=2^{2} \cdot 3^{0} \cdot 7^{1}$.
(a) (10 points) Prove that $\operatorname{gcd}(a, b)=p_{1}^{\min \left(e_{1}, f_{1}\right)} p_{2}^{\min \left(e_{2}, f_{2}\right)} \cdots p_{n}^{\min \left(e_{n}, f_{n}\right)}$. (Hint: start by showing that if c is a common factor of a and b, then there exist some integers $h_{1}, \ldots, h_{n} \geq 0$ such that $c=$ $\left.p_{1}^{h_{1}} \cdots p_{n}^{h_{n}}.\right)$
(b) (5 points) Can you come up with a similar formula for $\operatorname{lcm}(a, b)$? You don't have to prove it's true in general, but you should show that your formula works for at least two different examples.
2. (10 points) Find all the incongruent solutions to $x^{37}-x \equiv 0 \bmod 7$
3. (10 points) Find $\varphi(600)$ and use that to compute $7^{332} \bmod 600$, i.e. find an integer x with $0 \leq x<600$ such that $7^{332} \equiv x \bmod 600$.
4. (10 points) Use the Euclidean Algorithm to compute the multiplicative inverse of 131 modulo 1979. Use this to solve the congruence, $131 x \equiv 11 \bmod 1979$
