Math 4400 Homework 3

Due: Monday, June 5th, 2017

Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a note of who you worked with on each problem. Let me know if you find a typo, or you're stuck on any of the problems.

1. (10 points) Suppose a and b are nonzero integers. Suppose also that $a \mid b$ and $b \mid a$. Prove (carefully!) that $a = \pm b$.

Solution: By definition, there exist $c, d \in \mathbb{Z}$ such that ac = b and bd = a. But then acd = a, which means cd = 1. Thus |c||d| = 1. But |c| and |d| are integers, so this implies |c| = 1 and |d| = 1, so $c = \pm 1$ and $d = \pm 1$. In other words, $a = \pm b$.

- 2. (10 points) Recall that, by definition, we say $a \equiv b \mod n$ if $n \mid (a b)$. Now, let $x, y, z, n \in \mathbb{Z}$ with n > 0. Prove the following facts:
 - (a) $x \equiv x \mod n$

Solution: x - x = 0 and every number divides 0. Thus $n \mid (x - x)$, which means $x \equiv x \mod n$

(b) If $x \equiv y \mod n$, then $y \equiv x \mod n$

Solution: Since $x \equiv y \mod n$, we know $n \mid (x - y)$. Thus there is some $a \in \mathbb{Z}$ such that an = x - y. But then -an = y - x, which means $n \mid (y - x)$, and so $y \equiv x \mod n$.

(c) If $x \equiv y \mod n$ and $y \equiv z \mod n$, then $x \equiv z \mod n$.

Solution: There exist $a, b \in \mathbb{Z}$ such that an = x - y and bn = y - z. Then (a + b)n = x - y + y - z = x - z, so $x \equiv z \mod n$.

3. (a) (10 points) Suppose that $ac \equiv bc \mod m$ and gcd(c, m) = 1. Show that $a \equiv b \mod m$.

Solution: Since gcd(c, m) = 1, there is some x such that $cx \cong 1 \mod n$. Then $acx \equiv bcx \mod n$. Since $cx \cong 1 \mod n$, we can replace both instances of "cx" in that congruence with 1. Thus $a \equiv b \mod n$.

(b) (5 points) Give two examples showing that a is not necessarily equivalent to b above if $gcd(c, m) \neq 1$.

Solution: For example, we can choose m = 12. Then $3 \cdot 4 \equiv 6 \cdot 4 \mod 12$ even though $3 \not\equiv 6 \mod 12$. Another example: $5 \cdot 1 \equiv 5 \cdot 6 \mod 25$.

- 4. Find all incongruent solutions to each of the following congruences:
 - (a) (3 points) $7x \equiv 3 \mod 15$

Solution: We do the Euclidean algorithm on 7 and 15:

 $\begin{array}{l} 15=2\cdot 7+1\\ 7=7\cdot 1 \end{array}$

Then $7(-2) \cong 1 \mod 15$, which means $7 \cdot -6 \cong 3 \mod 15$. So $x \cong -6$ is a solution. To simplify, $x \cong 9$ is a solution. Since gcd(7, 15) = 1, there's only 1 solution, so we're done.

(b) (3 points) $6x \equiv 5 \mod 15$

Solution: gcd(6, 15) = 3, which doesn't divide 5, so there are no solutions

(c) (3 points) $x^2 \equiv 1 \mod 8$

Solution: Suppose x is a solution. Then $x^2 - 1 = n8$ for some n. But then $gcd(x^2, 8) = gcd(x^2 - n8, 8) = 1$, we must have gcd(x, 8) = 1. So we check all the numbers x with $0 \le x \le 7$ and gcd(x, 8) = 1:

 $1^2 \cong 1 \mod 8, 3^2 \cong 1 \mod 8, 5^2 \cong 1 \mod 8, 7^2 \cong 1 \mod 8$

So there are four incongruent solutions, and they are $x \equiv 1 \mod 8$, $x \equiv 3 \mod 8$, $x \equiv 5 \mod 8$, and $x \equiv 7 \mod 8$,

(d) (3 points) $x^2 \equiv 2 \mod 7$

Solution: We just check by hand:

a	$\mod 7$	0	1	2	3	4	5	6
a^2	$\mod 7$	0	1	4	2	2	4	1

So $x \cong 3$ and $x \cong 4$ are the two solutions

(e) (3 points) $x^2 + x + 1 \equiv 0 \mod 5$

Solution: We just check by hand:

$a \mod 7$	0	1	2	3	4
$a^2 + a + 1 \mod 7$	1	3	2	3	1

So there's no solution

5. (10 points) Find all incongruent solutions to the following congruence: $(10 + x)^{100} - x \equiv 0 \mod 5$

Solution: $(10+x)^{100} - x \equiv x^{100} - x \mod 5$. Further, we can check by hand (or use Fermat's little theorem) to see that $x^4 \equiv 1 \mod 5$ whenever $x \not\equiv 0 \mod 5$. So we break this problem into two cases: if $x \equiv 0 \mod 5$, then $x^{100} - x = 0 - 0 = 0$, so $x \equiv 0 \mod 5$ is one solution. If $x \not\equiv 0 \mod 5$, then by Fermat's littl theorem:

$$x^{100} - x = (x^4)^{25} - x \equiv 1 - x \mod 5$$

So $x^{100} - x \equiv 0 \mod 5$ if and only if $1 - x \equiv 0 \mod 5$, or in other words $x \equiv 1 \mod 5$. So our two incogruent solutions are $x \equiv 0 \mod 5$ and $x \equiv 1 \mod 5$.

6. (10 points) Let $a \in \mathbb{Z}$. Show that $a^2 - 3$ is not divisible by 4.

Solution: $a^2 - 3$ is disible by 4 if and only if $a^2 \cong 3 \mod 4$. Whether or not this is true just depends on the equivalence class of *a* modulo 4, so we check:

a	mod 4	0	1	2	3
a^2	$\mod 4$	0	1	4	1

Thus a^2 is never congruent to 3 modulo 4.

- 7. (10 points) Prove that the following "divisibility tests" work:
 - (a) An integer is divisible by 4 if and only if its last two digits are divisible by 4

Solution: Suppose $n = \sum_{i=0}^{d} n_{d-i} 10^i$, where $0 \le n_j < 10$ for all j. If $d \le 2$ the n just has 2 digits, so the problem is trivial. So suppose $d \ge 3$. Then $10^i \cong 0 \mod 4$ whenever $i \ge 2$, since $4 \mid 100$, so

 $n \cong 10n_{d-1} + n_d \mod 4$

In particular, $n \cong 0 \mod 4$ if and only if $10n_{d-1} + n_d \cong 0 \mod 4$. But the latter number is just the last two digits of n, so we're done.

(b) An integer is divisible by 9 if and only if the sum of its digits is divisible by 9

Solution: Again, suppose $n = \sum_{i=0}^{d} n_{d-i} 10^i$, where $0 \le n_j < 10$ for all j. Then $10 \cong 1 \mod 9$, so $n \cong \sum_{i=0}^{d} n_{d-i} 1^i \cong \sum_{i=0}^{d} n_{d-i} \mod 9$ In particular, $n \cong 0 \mod 9$ if and only if $\sum_{i=0}^{d} n_{d-i} \cong 0 \mod 9$, as desired.

(c) An integer is divisible by 11 if and only if the alternating sum of its digits is divisible by 11. (If the digits of n are $n_0n_1 \dots n_d$ then the alternating sum of its digits is $n_0 - n_1 + n_2 - \cdots$)

Solution: Again, suppose $n = \sum_{i=0}^{d} n_{d-i} 10^{i}$, where $0 \le n_{j} < 10$ for all j. Then $10 \cong -1$ mod 11, so $n \cong \sum_{i=0}^{d} n_{d-i} (-1)^{i} \mod 9$ In particular, $n \cong 0 \mod 9$ if and only if $\sum_{i=0}^{d} n_{d-i} (-1)^{i} \cong 0 \mod 9$. If d is even, this is the alternating sum $n_{0} - n_{1} + n_{2} - \cdots$. Otherwise, it's $-n_{0} + n_{1} - n_{2} + \cdots$, which is obviously divisible by 9 if and only if the alternating sum is.