Math 4400 Homework 3

Due: Monday, June 5th, 2017
Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a note of who you worked with on each problem. Let me know if you find a typo, or you're stuck on any of the problems.

1. (10 points) Suppose a and b are nonzero integers. Suppose also that $a \mid b$ and $b \mid a$. Prove (carefully!) that $a= \pm b$.

Solution: By definition, there exist $c, d \in \mathbb{Z}$ such that $a c=b$ and $b d=a$. But then $a c d=a$, which means $c d=1$. Thus $|c||d|=1$. But $|c|$ and $|d|$ are integers, so this implies $|c|=1$ and $|d|=1$, so $c= \pm 1$ and $d= \pm 1$. In other words, $a= \pm b$.
2. (10 points) Recall that, by definition, we say $a \equiv b \bmod n$ if $n \mid(a-b)$. Now, let $x, y, z, n \in \mathbb{Z}$ with $n>0$. Prove the following facts:
(a) $x \equiv x \bmod n$

Solution: $x-x=0$ and every number divides 0 . Thus $n \mid(x-x)$, which means $x \equiv x \bmod n$
(b) If $x \equiv y \bmod n$, then $y \equiv x \bmod n$

Solution: Since $x \equiv y \bmod n$, we know $n \mid(x-y)$. Thus there is some $a \in \mathbb{Z}$ such that $a n=x-y$. But then $-a n=y-x$, which means $n \mid(y-x)$, and so $y \equiv x \bmod n$.
(c) If $x \equiv y \bmod n$ and $y \equiv z \bmod n$, then $x \equiv z \bmod n$.

Solution: There exist $a, b \in \mathbb{Z}$ such that $a n=x-y$ and $b n=y-z$. Then $(a+b) n=$ $x-y+y-z=x-z$, so $x \equiv z \bmod n$.
3. (a) (10 points) Suppose that $a c \equiv b c \bmod m$ and $\operatorname{gcd}(c, m)=1$. Show that $a \equiv b \bmod m$.

Solution: Since $\operatorname{gcd}(c, m)=1$, there is some x such that $c x \cong 1 \bmod n$. Then $a c x \equiv b c x$ $\bmod n$. Since $c x \cong 1 \bmod n$, we can replace both instances of " $c x$ " in that congruence with 1 . Thus $a \equiv b \bmod n$.
(b) (5 points) Give two examples showing that a is not necessarily equivalent to b above if $\operatorname{gcd}(c, m) \neq 1$.

Solution: For example, we can choose $m=12$. Then $3 \cdot 4 \equiv 6 \cdot 4 \bmod 12$ even though $3 \not \equiv 6$ $\bmod 12$. Another example: $5 \cdot 1 \equiv 5 \cdot 6 \bmod 25$.
4. Find all incongruent solutions to each of the following congruences:
(a) (3 points) $7 x \equiv 3 \bmod 15$

Solution: We do the Euclidean algorithm on 7 and 15:

$$
\begin{aligned}
15 & =2 \cdot 7+1 \\
7 & =7 \cdot 1
\end{aligned}
$$

Then $7(-2) \cong 1 \bmod 15$, which means $7 \cdot-6 \cong 3 \bmod 15$. So $x \cong-6$ is a solution. To simplify, $x \cong 9$ is a solution. Since $\operatorname{gcd}(7,15)=1$, there's only 1 solution, so we're done.
(b) (3 points) $6 x \equiv 5 \bmod 15$

Solution: $\operatorname{gcd}(6,15)=3$, which doesn't divide 5 , so there are no solutions
(c) (3 points) $x^{2} \equiv 1 \bmod 8$

Solution: Suppose x is a solution. Then $x^{2}-1=n 8$ for some n. But then $\operatorname{gcd}\left(x^{2}, 8\right)=$ $\operatorname{gcd}\left(x^{2}-n 8,8\right)=1$, we must have $\operatorname{gcd}(x, 8)=1$. So we check all the numbers x with $0 \leq x \leq 7$ and $\operatorname{gcd}(x, 8)=1$:

$$
1^{2} \cong 1 \bmod 8,3^{2} \cong 1 \quad \bmod 8,5^{2} \cong 1 \bmod 8,7^{2} \cong 1 \bmod 8
$$

So there are four incongruent solutions, and they are $x \equiv 1 \bmod 8, x \equiv 3 \bmod 8, x \equiv 5$ $\bmod 8$, and $x \equiv 7 \bmod 8$,
(d) (3 points) $x^{2} \equiv 2 \bmod 7$

Solution: We just check by hand:

a	$\bmod 7$	0	1	2	3	4	5	6
a^{2}	$\bmod 7$	0	1	4	2	2	4	1

So $x \cong 3$ and $x \cong 4$ are the two solutions
(e) $(3$ points $) x^{2}+x+1 \equiv 0 \bmod 5$

Solution: We just check by hand:

$a \bmod 7$	0	1	2	3	4
$a^{2}+a+1 \quad \bmod 7$	1	3	2	3	1

So there's no solution
5. (10 points) Find all incongruent solutions to the following congruence: $(10+x)^{100}-x \equiv 0 \bmod 5$

Solution: $(10+x)^{100}-x \equiv x^{100}-x \bmod 5$. Further, we can check by hand (or use Fermat's little theorem) to see that $x^{4} \equiv 1 \bmod 5$ whenever $x \not \equiv 0 \bmod 5$. So we break this problem into two cases: if $x \equiv 0 \bmod 5$, then $x^{100}-x=0-0=0$, so $x \equiv 0 \bmod 5$ is one solution. If $x \not \equiv 0 \bmod 5$, then by Fermat's littl theorem:

$$
x^{100}-x=\left(x^{4}\right)^{25}-x \equiv 1-x \quad \bmod 5
$$

So $x^{100}-x \equiv 0 \bmod 5$ if and only if $1-x \equiv 0 \bmod 5$, or in other words $x \equiv 1 \bmod 5$. So our two incogruent solutions are $x \equiv 0 \bmod 5$ and $x \equiv 1 \bmod 5$.
6. (10 points) Let $a \in \mathbb{Z}$. Show that $a^{2}-3$ is not divisible by 4 .

Solution: $a^{2}-3$ is disible by 4 if and only if $a^{2} \cong 3 \bmod 4$. Whether or not this is true just depends on the equivalence class of a modulo 4 , so we check:

a	$\bmod 4$	0	1	2	3
a^{2}	$\bmod 4$	0	1	4	1

Thus a^{2} is never congruent to 3 modulo 4.
7. (10 points) Prove that the following "divisibility tests" work:
(a) An integer is divisible by 4 if and only if its last two digits are divisible by 4

Solution: Suppose $n=\sum_{i=0}^{d} n_{d-i} 10^{i}$, where $0 \leq n_{j}<10$ for all j. If $d \leq 2$ the n just has 2 digits,so the problem is trivial. So suppose $d \geq 3$. Then $10^{i} \cong 0 \bmod 4$ whenever $i \geq 2$, since $4 \mid 100$, so

$$
n \cong 10 n_{d-1}+n_{d} \quad \bmod 4
$$

In particular, $n \cong 0 \bmod 4$ if and only if $10 n_{d-1}+n_{d} \cong 0 \bmod 4$. But the latter number is just the last two digits of n, so we're done.
(b) An integer is divisible by 9 if and only if the sum of its digits is divisible by 9

Solution: Again, suppose $n=\sum_{i=0}^{d} n_{d-i} 10^{i}$, where $0 \leq n_{j}<10$ for all j. Then $10 \cong 1 \bmod 9$,
so so

$$
n \cong \sum_{i=0}^{d} n_{d-i} 1^{i} \cong \sum_{i=0}^{d} n_{d-i} \quad \bmod 9
$$

In particular, $n \cong 0 \bmod 9$ if and only if $\sum_{i=0}^{d} n_{d-i} \cong 0 \bmod 9$, as desired.
(c) An integer is divisible by 11 if and only if the alternating sum of its digits is divisible by 11 . (If the digits of n are $n_{0} n_{1} \ldots n_{d}$ then the alternating sum of its digits is $n_{0}-n_{1}+n_{2}-\cdots$)

Solution: Again, suppose $n=\sum_{i=0}^{d} n_{d-i} 10^{i}$, where $0 \leq n_{j}<10$ for all j. Then $10 \cong-1$ $\bmod 11$, so

$$
n \cong \sum_{i=0}^{d} n_{d-i}(-1)^{i} \quad \bmod 9
$$

In particular, $n \cong 0 \bmod 9$ if and only if $\sum_{i=0}^{d} n_{d-i}(-1)^{i} \cong 0 \bmod 9$. If d is even, this is the alternating sum $n_{0}-n_{1}+n_{2}-\cdots$. Otherwise, it's $-n_{0}+n_{1}-n_{2}+\cdots$, which is obviously divisible by 9 if and only if the alternating sum is.

