## Math 4400 Homework 3 Hints

Problem 5 To figure out how to deal with that power of 100, try taking different numbers and seeing if there's a pattern to their powers mod 5 . For instance, if we start with the number 2 , its powers mod 5 are:

$$
2^{1} \cong 2,2^{2} \cong 4,2^{3} \cong 3,2^{4} \cong 2^{3} \cdot 2 \cong 3 \cdot 2 \cong 1,2^{4} \cong 1 \cdot 2 \cong 2, \ldots
$$

Problem $6 a^{2}-3$ is divisible by 4 if and only if $a^{2}-3 \cong 0 \bmod 4$.
Problem 7 For this problem, it's necessary to understand how to think of the digits of an integer in a precise way that you can use to do proofs. Here's how this works: for any integer $n$, the digits of $n$ are $n_{0}, n_{1}, \ldots, n_{d}$ if for all $i$ such that $0 \leq i \leq d$ we have:

- $n_{i} \in \mathbb{Z}$,
- $0 \leq n_{i} \leq 9$, and
- $n=\sum_{i=0}^{d} 10^{d-i} n_{i}$
E.g. the digits of 1024 are $n_{0}=1, n_{1}=0, n_{2}=2, n_{3}=4$, because

$$
1024=10^{3} \cdot 1+10^{2} \cdot 0+10^{1} \cdot 2+10^{0} \cdot 4
$$

