Math 4400 Homework 3

Due: Monday, June 5th, 2017

Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a note of who you worked with on each problem. Let me know if you find a typo, or you're stuck on any of the problems.

- 1. (10 points) Suppose a and b are nonzero integers. Suppose also that $a \mid b$ and $b \mid a$. Prove (carefully!) that $a = \pm b$.
- 2. (10 points) Recall that, by definition, we say $a \equiv b \mod n$ if $n \mid (a b)$. Now, let $x, y, z, n \in \mathbb{Z}$ with n > 0. Prove the following facts:
 - (a) $x \equiv x \mod n$
 - (b) If $x \equiv y \mod n$, then $y \equiv x \mod n$
 - (c) If $x \equiv y \mod n$ and $y \equiv z \mod n$, then $x \equiv z \mod n$.

The fact that these three statements hold means that " $_{-} \equiv _{-} \mod n$ " is an equivalence relation.

- 3. (a) (10 points) Suppose that $ac \equiv bc \mod m$ and gcd(c,m) = 1. Show that $a \equiv b \mod m$.
 - (b) (5 points) Give two examples showing that a is not necessarily equivalent to b above if $gcd(c, m) \neq 1$.
- 4. Find all incongruent solutions to each of the following congruences:
 - (a) (3 points) $7x \equiv 3 \mod 15$
 - (b) (3 points) $6x \equiv 5 \mod 15$
 - (c) (3 points) $x^2 \equiv 1 \mod 8$
 - (d) (3 points) $x^2 \equiv 2 \mod 7$
 - (e) (3 points) $x^2 + x + 1 \equiv 0 \mod 5$
- 5. (10 points) Find all incongruent solutions to the following congruence: $(10 + x)^{100} x \equiv 0 \mod 5$
- 6. (10 points) Let $a \in \mathbb{Z}$. Show that $a^2 3$ is not divisible by 4.
- 7. (10 points) Prove that the following "divisibility tests" work:
 - (a) An integer is divisible by 4 if and only if its last two digits are divisible by 4
 - (b) An integer is divisible by 9 if and only if the sum of its digits is divisible by 9
 - (c) An integer is divisible by 11 if and only if the alternating sum of its digits is divisible by 11. (If the digits of n are $n_0n_1 \dots n_d$ then the alternating sum of its digits is $n_0 n_1 + n_2 \cdots$)