Math 4400 Homework 2
Due: Wednesday, May 31st, 2017 (Quiz on Friday)

Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a
note of who you worked with on each problem. Let me know if you find a typo, or you're stuck on any of
the problems.

1. Let ay,...,a, be nonzero integers, with n > 2. We define the greatest common denominator of this
n-tuple recursively:
ged(aq, ..., a,) = ged (ged(a, ... an-1),an)

and ged(aq, az) is the usual ged. Prove the following generalization of Bezout’s lemma: the equation
ai1x1 + asxs + -+ apnty, =0

has a solution with z1,...,z, € Z if and only if b is divisible by ged(x1, ..., x,).

Solution: (The problem statement should say ged(aq,...,a,), not ged(z1,...,x,))

We proceed by induction on n. The base case, n = 2, is just Bezout’s lemma. Now let k& > 2 and

suppose that, for arbitrary integers ay,as,...,ar,b € Z, the equation ayx1 + asxs + -+ + arrp = b
has an integer solution if and only if ged(ay,...,ax) | b. Let ay,...,axr+1,b € Z be arbitrary. We
wish to show that ajx; + -+ 4+ ax1125+1 = b has a solution if and only if ged (a1, ..., ax+1) | b.

So, suppose a1y + - -+ + ag+1TE+1 = b has a solution x(l), xg, e ,z2+1. By definition,

ng(a17 e aa/k-‘rl) = ng(ng(a’17 e )a/k))) ak}-‘rl)

which means ged(ag, -+ ,ag+1) divides ged(ag, -+ ,ax) and agy1. By induction, ged(aq,--- ,ag)
divides a 29 + - -+ + ajz}, and so

ged(ay, -+, apy1) | aral + - + apad
but since ged(aq, -+« ,ak+1) | a1, we see that
ged(ar, -+ apq1) | ar@) + - 4 apq1zgy

and thus ged(aq, -+ ,ag+1) | b, as desired.
Conversely, suppose that ged(aq,- - ,ag+1) | b. Then by Bezout’s lemma, there exist some z,y € Z
such that

ged(ag, -+ ,ap)x + ag41y = b.
By the induction hypothesis, since ged(ay, - - - , ag) divides ged(ay, - - - , ag )z, there exist some z0, - - - |z
in Z such that a;29 + - - + axz = ged(aq, - -+, ap)z. But then

a2l + -+ + apa) + appry = b,
as desired.

2. Prove the theorem we mentioned in class about how to get continued fractions expansions from the
Euclidean algorithm. Namely, suppose a,b € Z are integers with a,b > 1. Suppose the Euclidean



algorithm applied to a and b goes as

b=qa+r

a =qaT1 + 12

Tn—1 =G4n+1Tn

b
for some n > 0. Show that — = [g1;q2, - . ., ¢nt1]
a

Solution: We proceed by induction on n. If n = 0, then the Euclidean algorithm is just one step:
b= qa, so b/a = ¢1, whose continued fraction expansion is just [g1], as desired.

Now suppose the result is true for n = k. We wish to prove the result when n = k + 1. So suppose
that a,b € Z and that the Euclidean algorithm has k 4 2 steps:

b=qia+ 1

a =qor1 + 12

Tk =(qk4+2Tk+1

By the induction hypothesis, we know that a/r1 = [¢2;93, "+ , qkr2]. Further, b/a = ¢1 +r1/a. But
this means that b/a = ¢1 + 1/[g2;q3, - , Grt2] = [@1;92, -+ , Qe+2], as desired.

3. (a) Find all integer solutions of 13853z + 6951y = gcd (13853, 6951).

Solution: We start by performing the Euclidean algorithm:

13853 = 1- 6951 + 6902
6951 = 1-6902 + 49
6902 = 140 - 49 + 42
49=1-4247
42=6-7
So ged(13853,6951) = 7. From the work we did for the Euclidean algorithm, we get an initial
solution to the equation:
49 —-42=7
49 — (6902 — 140 -49) =7
141-49 — 6902 =7
141 - (6951 — 6902) — 6902 = 7
141 - 6951 — 142 - 6902 = 7
1416951 — 142 - (13853 — 6951) = 7
283 -6951 — 142-13853 =7

So we get an initial solution zg = —142 and yo = 283. Thus every solution to the equation is
given by

6951 13853
(z,y) = (—142 + ke 283 k7) keZ
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We simplify: the set of solutions is

{(—142 + 993k, 283 — 1979k) | k € Z}

(b) Show that 427z + 259y = 13 has no integer solutions

Solution: By the Euclidean algorithm, ged(427,259) =7

427 =1-259 + 168
259 =1-168+91
168 =1-91+77

91=1-77+14
T7T=5-14+7
14=2-7

But 7 does not divide 13, so by Bezout’s lemma, 427z 4+ 259y = 13 has no integer solutions.

4. Suppose a,b,c € Z, a # 0. Suppose also that ¢ | a and ¢ | b. Show that ¢ | ged(a,b).

Solution: By Bezout’s lemma, there exist z,y € Z such that
az + by = ged(a, b)

Since ¢ | @ and ¢ | b, we see that ¢ divides the left hand side above. But that means ¢ divides
ged(a, b). (We know that the greatest common divisor of a and b exists because a # 0)

5. Suppose ged(a,b) =1, a | ¢, and b | ¢. Show ab | c.

Solution: By definition, there exist j,k € 7Z such that aj = ¢ and bk = ¢. By Bezout’s lemma,
there exist x,y € Z such that ax + by = 1. Then axc + byc = ¢. But then azbk + byaj = c. We see
that ab divides the left-hand side, and so ab must divide c.

6. Suppose ged(a,b) =1 and a | be. Show that a | c.

Solution: We can factor a, b, and ¢ into primes:

a =Ppip2 - Ps
b=qiq2- - q
C=T1T2 Ty

and so
be=qu - qr1 Ty

First, let’s discuss the idea of the proof: since a | be, we have p | be. Since py is prime, this means pg
divides one of the ¢’s or one of the r’s. But since ged(a,b) = 1, we can’t have p; | ¢; for any ¢. Thus
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ps | ; for some j, which means ps = r; for some j. We can relabel the r’s so that ps = r,. Now we
have p1ps - Ps—1 | q1 - qr1 -+ ru—1. We can repeat the process above to show that ps_1 = 7,_1,
Ds—2 = Ty—2, and so on, until we get

rre s Ty—s@ =T1T2 " Ty—sP1P2 " Ps = T1T2 Ty =C

Note how I wrote “we can repeat the process above to show...”; this suggests that a truly rigorous
proof would use induction. Here’s how that would go:

We proceed by induction on s, the number of primes appearing in the factorization of a. If s =1,
then we have a = p; is prime. Then, since a | bc we know a has to divide b or ¢. But a can’t divide
b since ged(a,b) = 1. Thus a | ¢, as desired.

Now suppose the result is true when s = k and suppose a = pi1pa -+ pr+1. Then pry1 | be. As1
argued above, this means pgy1 = r; for some i. Without loss of generality, we may assume pyy1 = 7.
Then

a/Pry1 =DiD2- Pk | Q- @1 Tu—1 = b ¢/Pry1

Note that we still have ged(a/prs1,b) = 1, since any divisor of a/pg41 is certainly a divisor of a.
Thus, by the induction hypothesis, this means a/pgy1 | ¢/pr+1. But this means a | ¢, as desired.

7. Let a and b be two positive integers. Let S = {c € N‘a | e, b c}. Then S is nonempty, since it contains
ab, so it has a minimal element. This minimal element is called the lowest common multiple of a and
b and denoted lecm(a,b). Show that lem(a,b) divides every other element of S. Hint: use the division
algorithm.

Solution: (The problem statement should really say S = {c € N’a |c,b]c,c# 0}, so that lem(a, b)
isn’t always 0)

Let m = lem(a, b). Then there exist x,y € Z such that ax = by = m. Further, let n be any common
multiple of @ and b, so that at = n and bu = n for some ¢,u € N. The division algorithm tells us
that there exist unique ¢, r € Z with 0 < r < m, such that n = gm +r. We wish to show that » = 0.
If r # 0, then r = n— gm is a nonzero common multiple of a; indeed, n — gm = at — gax = a(t — qx)
and n — gm = bu — gby = b(u — qy). But this contradicts the fact that m = lem(a, b), since r < m.

8. Find a formula for all the points on the hyperbola
-y =1

whose coordinates are rational numbers

Solution: This is a lot like what we did in class to find a formula for all the pythagorean triples.
Start with any point on the hyperbola with rational coordinates, such as (1,0). Suppose (zg,yo) is
some point on the hyperbola with xg,yo € Q. Then the line going through (1,0) and (zo,yo) has
rational slope. Let m be the slope of this line. We're going to compute x¢ and ¥y in terms of m.

Then the equation of the line going through (1,0) and (z,y0) is y = m(z — 1), by the point-slope
formula. Thus the intersection of our line and our hyperbola is the set of solutions to the following
two equations:

y=m(z—1)
-yt =1
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Substituting the first equation into the second one, we see that
22— (m(z—1)°=1
In other words,
(1—m*)a? +2m?z—m? —1=0

Now, we know that (1,0) is one of the points where our line intersects our hyperbola. Thus x = 1
is a solution to the above equation, but it’s not the solution we’re looking for. So we can divide the
above polynomial by z — 1:

(1 —m?)2? +2m2z —m? — 1

1 =(1-m?z+m?+1

so we must have (1 — m?)zg +m? +1 = 0. Thus, we must have m # 1 (or else our equation says
2=0), so

_m2—|—1
mo_mQ—l
and
m3i4+m —m3+m 2m
yozmx—m=m271+ m2—1  mZ_1

We have shown that every point with rational coordinates (usually just called a rational point) on
our hyperbola 2% — y? = 1 is of the form

m2+1 2m

m2—-1"m2 -1
for some m € Q with m # 1. Now we have to check: is this point actually on the hyperbola for all
m € Q\ {1}? The answer is yes:

m2 +1 2 2m 2_m4+2m2+174m2
m2 —1 m2—1,) mit —2m?2 +1

for all m € Q with m # 1.
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