
Math 4400 Homework 2
Due: Wednesday, May 31st, 2017 (Quiz on Friday)

Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a
note of who you worked with on each problem. Let me know if you find a typo, or you’re stuck on any of
the problems.

1. Let a1, . . . , an be nonzero integers, with n ≥ 2. We define the greatest common denominator of this
n-tuple recursively:

gcd(a1, . . . , an) = gcd (gcd(a1, . . . , an−1), an)

and gcd(a1, a2) is the usual gcd. Prove the following generalization of Bezout’s lemma: the equation

a1x1 + a2x2 + · · ·+ anxn = b

has a solution with x1, . . . , xn ∈ Z if and only if b is divisible by gcd(x1, . . . , xn).

Solution: (The problem statement should say gcd(a1, . . . , an), not gcd(x1, . . . , xn))

We proceed by induction on n. The base case, n = 2, is just Bezout’s lemma. Now let k ≥ 2 and
suppose that, for arbitrary integers a1, a2, . . . , ak, b ∈ Z, the equation a1x1 + a2x2 + · · ·+ akxk = b
has an integer solution if and only if gcd(a1, . . . , ak) | b. Let a1, . . . , ak+1, b ∈ Z be arbitrary. We
wish to show that a1x1 + · · ·+ ak+1xk+1 = b has a solution if and only if gcd (a1, . . . , ak+1) | b.
So, suppose a1x1 + · · ·+ ak+1xk+1 = b has a solution x0

1, x
0
2, · · · , x0

k+1. By definition,

gcd(a1, · · · , ak+1) = gcd(gcd(a1, · · · , ak), ak+1)

which means gcd(a1, · · · , ak+1) divides gcd(a1, · · · , ak) and ak+1. By induction, gcd(a1, · · · , ak)
divides a1x

0
1 + · · ·+ akx

0
k, and so

gcd(a1, · · · , ak+1) | a1x0
1 + · · ·+ akx

0
k

but since gcd(a1, · · · , ak+1) | ak+1, we see that

gcd(a1, · · · , ak+1) | a1x0
1 + · · ·+ ak+1x

0
k+1

and thus gcd(a1, · · · , ak+1) | b, as desired.

Conversely, suppose that gcd(a1, · · · , ak+1) | b. Then by Bezout’s lemma, there exist some x, y ∈ Z
such that

gcd(a1, · · · , ak)x + ak+1y = b.

By the induction hypothesis, since gcd(a1, · · · , ak) divides gcd(a1, · · · , ak)x, there exist some x0
1, · · · , x0

k

in Z such that a1x
0
1 + · · ·+ akx

0
k = gcd(a1, · · · , ak)x. But then

a1x
0
1 + · · ·+ akx

0
k + ak+1y = b,

as desired.

2. Prove the theorem we mentioned in class about how to get continued fractions expansions from the
Euclidean algorithm. Namely, suppose a, b ∈ Z are integers with a, b ≥ 1. Suppose the Euclidean



algorithm applied to a and b goes as

b =q1a + r1

a =q2r1 + r2

...

rn−1 =qn+1rn

for some n ≥ 0. Show that
b

a
= [q1; q2, . . . , qn+1]

Solution: We proceed by induction on n. If n = 0, then the Euclidean algorithm is just one step:
b = q1a, so b/a = q1, whose continued fraction expansion is just [q1], as desired.

Now suppose the result is true for n = k. We wish to prove the result when n = k + 1. So suppose
that a, b ∈ Z and that the Euclidean algorithm has k + 2 steps:

b =q1a + r1

a =q2r1 + r2

...

rk =qk+2rk+1

By the induction hypothesis, we know that a/r1 = [q2; q3, · · · , qk+2]. Further, b/a = q1 + r1/a. But
this means that b/a = q1 + 1/[q2; q3, · · · , qk+2] = [q1; q2, · · · , qk+2], as desired.

3. (a) Find all integer solutions of 13853x + 6951y = gcd(13853, 6951).

Solution: We start by performing the Euclidean algorithm:

13853 = 1 · 6951 + 6902

6951 = 1 · 6902 + 49

6902 = 140 · 49 + 42

49 = 1 · 42 + 7

42 = 6 · 7

So gcd(13853, 6951) = 7. From the work we did for the Euclidean algorithm, we get an initial
solution to the equation:

49− 42 = 7

49− (6902− 140 · 49) = 7

141 · 49− 6902 = 7

141 · (6951− 6902)− 6902 = 7

141 · 6951− 142 · 6902 = 7

141 · 6951− 142 · (13853− 6951) = 7

283 · 6951− 142 · 13853 = 7

So we get an initial solution x0 = −142 and y0 = 283. Thus every solution to the equation is
given by

(x, y) =

(
−142 + k

6951

7
, 283− k

13853

7

)
, k ∈ Z
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We simplify: the set of solutions is

{(−142 + 993k, 283− 1979k) | k ∈ Z}

(b) Show that 427x + 259y = 13 has no integer solutions

Solution: By the Euclidean algorithm, gcd(427, 259) = 7

427 = 1 · 259 + 168

259 = 1 · 168 + 91

168 = 1 · 91 + 77

91 = 1 · 77 + 14

77 = 5 · 14 + 7

14 = 2 · 7

But 7 does not divide 13, so by Bezout’s lemma, 427x + 259y = 13 has no integer solutions.

4. Suppose a, b, c ∈ Z, a 6= 0. Suppose also that c | a and c | b. Show that c | gcd(a, b).

Solution: By Bezout’s lemma, there exist x, y ∈ Z such that

ax + by = gcd(a, b)

Since c | a and c | b, we see that c divides the left hand side above. But that means c divides
gcd(a, b). (We know that the greatest common divisor of a and b exists because a 6= 0)

5. Suppose gcd(a, b) = 1, a | c, and b | c. Show ab | c.

Solution: By definition, there exist j, k ∈ Z such that aj = c and bk = c. By Bezout’s lemma,
there exist x, y ∈ Z such that ax + by = 1. Then axc + byc = c. But then axbk + byaj = c. We see
that ab divides the left-hand side, and so ab must divide c.

6. Suppose gcd(a, b) = 1 and a | bc. Show that a | c.

Solution: We can factor a, b, and c into primes:

a = p1p2 · · · ps
b = q1q2 · · · qt
c = r1r2 · · · ru

and so
bc = q1 · · · qtr1 · · · ru

First, let’s discuss the idea of the proof: since a | bc, we have ps | bc. Since ps is prime, this means ps
divides one of the q’s or one of the r’s. But since gcd(a, b) = 1, we can’t have ps | qi for any i. Thus
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ps | rj for some j, which means ps = rj for some j. We can relabel the r’s so that ps = ru. Now we
have p1p2 · · · ps−1 | q1 · · · qtr1 · · · ru−1. We can repeat the process above to show that ps−1 = ru−1,
ps−2 = ru−2, and so on, until we get

r1r2 · · · ru−sa = r1r2 · · · ru−sp1p2 · · · ps = r1r2 · · · ru = c

Note how I wrote “we can repeat the process above to show. . . ”; this suggests that a truly rigorous
proof would use induction. Here’s how that would go:

We proceed by induction on s, the number of primes appearing in the factorization of a. If s = 1,
then we have a = p1 is prime. Then, since a | bc we know a has to divide b or c. But a can’t divide
b since gcd(a, b) = 1. Thus a | c, as desired.

Now suppose the result is true when s = k and suppose a = p1p2 · · · pk+1. Then pk+1 | bc. As I
argued above, this means pk+1 = ri for some i. Without loss of generality, we may assume pk+1 = ru.
Then

a/pk+1 = p1p2 · · · pk | q1 · · · qtr1 · · · ru−1 = b · c/pk+1

Note that we still have gcd(a/pk+1, b) = 1, since any divisor of a/pk+1 is certainly a divisor of a.
Thus, by the induction hypothesis, this means a/pk+1 | c/pk+1. But this means a | c, as desired.

7. Let a and b be two positive integers. Let S =
{
c ∈ N

∣∣∣a | c, b | c}. Then S is nonempty, since it contains

ab, so it has a minimal element. This minimal element is called the lowest common multiple of a and
b and denoted lcm(a, b). Show that lcm(a, b) divides every other element of S. Hint: use the division
algorithm.

Solution: (The problem statement should really say S =
{
c ∈ N

∣∣∣a | c, b | c, c 6= 0
}

, so that lcm(a, b)

isn’t always 0)

Let m = lcm(a, b). Then there exist x, y ∈ Z such that ax = by = m. Further, let n be any common
multiple of a and b, so that at = n and bu = n for some t, u ∈ N. The division algorithm tells us
that there exist unique q, r ∈ Z with 0 ≤ r < m, such that n = qm+ r. We wish to show that r = 0.
If r 6= 0, then r = n− qm is a nonzero common multiple of a; indeed, n− qm = at− qax = a(t− qx)
and n− qm = bu− qby = b(u− qy). But this contradicts the fact that m = lcm(a, b), since r < m.

8. Find a formula for all the points on the hyperbola

x2 − y2 = 1

whose coordinates are rational numbers

Solution: This is a lot like what we did in class to find a formula for all the pythagorean triples.
Start with any point on the hyperbola with rational coordinates, such as (1, 0). Suppose (x0, y0) is
some point on the hyperbola with x0, y0 ∈ Q. Then the line going through (1, 0) and (x0, y0) has
rational slope. Let m be the slope of this line. We’re going to compute x0 and y0 in terms of m.

Then the equation of the line going through (1, 0) and (x0, y0) is y = m(x − 1), by the point-slope
formula. Thus the intersection of our line and our hyperbola is the set of solutions to the following
two equations:

y = m(x− 1)

x2 − y2 = 1
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Substituting the first equation into the second one, we see that

x2 − (m(x− 1))
2

= 1

In other words,
(1−m2)x2 + 2m2x−m2 − 1 = 0

Now, we know that (1, 0) is one of the points where our line intersects our hyperbola. Thus x = 1
is a solution to the above equation, but it’s not the solution we’re looking for. So we can divide the
above polynomial by x− 1:

(1−m2)x2 + 2m2x−m2 − 1

x− 1
= (1−m2)x + m2 + 1

so we must have (1 −m2)x0 + m2 + 1 = 0. Thus, we must have m 6= 1 (or else our equation says
2 = 0), so

x0 =
m2 + 1

m2 − 1

and

y0 = mx−m =
m3 + m

m2 − 1
+
−m3 + m

m2 − 1
=

2m

m2 − 1

We have shown that every point with rational coordinates (usually just called a rational point) on
our hyperbola x2 − y2 = 1 is of the form(

m2 + 1

m2 − 1
,

2m

m2 − 1

)
for some m ∈ Q with m 6= 1. Now we have to check: is this point actually on the hyperbola for all
m ∈ Q \ {1}? The answer is yes:(

m2 + 1

m2 − 1

)2

−
(

2m

m2 − 1

)2

=
m4 + 2m2 + 1− 4m2

m4 − 2m2 + 1
= 1

for all m ∈ Q with m 6= 1.
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