Math 4400 Homework 2

Due: Wednesday, May 31st, 2017 (Quiz on Friday)

Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a note of who you worked with on each problem. Let me know if you find a typo, or you're stuck on any of the problems.

1. Let a_{1}, \ldots, a_{n} be nonzero integers, with $n \geq 2$. We define the greatest common denominator of this n-tuple recursively:

$$
\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=\operatorname{gcd}\left(\operatorname{gcd}\left(a_{1}, \ldots, a_{n-1}\right), a_{n}\right)
$$

and $\operatorname{gcd}\left(a_{1}, a_{2}\right)$ is the usual gcd. Prove the following generalization of Bezout's lemma: the equation

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

has a solution with $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ if and only if b is divisible by $\operatorname{gcd}\left(x_{1}, \ldots, x_{n}\right)$.

Solution: (The problem statement should say $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$, not $\left.\operatorname{gcd}\left(x_{1}, \ldots, x_{n}\right)\right)$
We proceed by induction on n. The base case, $n=2$, is just Bezout's lemma. Now let $k \geq 2$ and suppose that, for arbitrary integers $a_{1}, a_{2}, \ldots, a_{k}, b \in \mathbb{Z}$, the equation $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}=b$ has an integer solution if and only if $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right) \mid b$. Let $a_{1}, \ldots, a_{k+1}, b \in \mathbb{Z}$ be arbitrary. We wish to show that $a_{1} x_{1}+\cdots+a_{k+1} x_{k+1}=b$ has a solution if and only if $\operatorname{gcd}\left(a_{1}, \ldots, a_{k+1}\right) \mid b$. So, suppose $a_{1} x_{1}+\cdots+a_{k+1} x_{k+1}=b$ has a solution $x_{1}^{0}, x_{2}^{0}, \cdots, x_{k+1}^{0}$. By definition,

$$
\operatorname{gcd}\left(a_{1}, \cdots, a_{k+1}\right)=\operatorname{gcd}\left(\operatorname{gcd}\left(a_{1}, \cdots, a_{k}\right), a_{k+1}\right)
$$

which means $\operatorname{gcd}\left(a_{1}, \cdots, a_{k+1}\right)$ divides $\operatorname{gcd}\left(a_{1}, \cdots, a_{k}\right)$ and a_{k+1}. By induction, $\operatorname{gcd}\left(a_{1}, \cdots, a_{k}\right)$ divides $a_{1} x_{1}^{0}+\cdots+a_{k} x_{k}^{0}$, and so

$$
\operatorname{gcd}\left(a_{1}, \cdots, a_{k+1}\right) \mid a_{1} x_{1}^{0}+\cdots+a_{k} x_{k}^{0}
$$

but since $\operatorname{gcd}\left(a_{1}, \cdots, a_{k+1}\right) \mid a_{k+1}$, we see that

$$
\operatorname{gcd}\left(a_{1}, \cdots, a_{k+1}\right) \mid a_{1} x_{1}^{0}+\cdots+a_{k+1} x_{k+1}^{0}
$$

and thus $\operatorname{gcd}\left(a_{1}, \cdots, a_{k+1}\right) \mid b$, as desired.
Conversely, suppose that $\operatorname{gcd}\left(a_{1}, \cdots, a_{k+1}\right) \mid b$. Then by Bezout's lemma, there exist some $x, y \in \mathbb{Z}$ such that

$$
\operatorname{gcd}\left(a_{1}, \cdots, a_{k}\right) x+a_{k+1} y=b
$$

By the induction hypothesis, since $\operatorname{gcd}\left(a_{1}, \cdots, a_{k}\right)$ divides $\operatorname{gcd}\left(a_{1}, \cdots, a_{k}\right) x$, there exist some $x_{1}^{0}, \cdots, x_{k}^{0}$ in \mathbb{Z} such that $a_{1} x_{1}^{0}+\cdots+a_{k} x_{k}^{0}=\operatorname{gcd}\left(a_{1}, \cdots, a_{k}\right) x$. But then

$$
a_{1} x_{1}^{0}+\cdots+a_{k} x_{k}^{0}+a_{k+1} y=b
$$

as desired.
2. Prove the theorem we mentioned in class about how to get continued fractions expansions from the Euclidean algorithm. Namely, suppose $a, b \in \mathbb{Z}$ are integers with $a, b \geq 1$. Suppose the Euclidean
algorithm applied to a and b goes as

$$
\begin{gathered}
b=q_{1} a+r_{1} \\
a=q_{2} r_{1}+r_{2} \\
\vdots \\
r_{n-1}= \\
q_{n+1} r_{n}
\end{gathered}
$$

for some $n \geq 0$. Show that $\frac{b}{a}=\left[q_{1} ; q_{2}, \ldots, q_{n+1}\right]$
Solution: We proceed by induction on n. If $n=0$, then the Euclidean algorithm is just one step: $b=q_{1} a$, so $b / a=q_{1}$, whose continued fraction expansion is just [q_{1}], as desired.
Now suppose the result is true for $n=k$. We wish to prove the result when $n=k+1$. So suppose that $a, b \in \mathbb{Z}$ and that the Euclidean algorithm has $k+2$ steps:

$$
\begin{gathered}
b=q_{1} a+r_{1} \\
a=q_{2} r_{1}+r_{2} \\
\vdots \\
r_{k}=q_{k+2} r_{k+1}
\end{gathered}
$$

By the induction hypothesis, we know that $a / r_{1}=\left[q_{2} ; q_{3}, \cdots, q_{k+2}\right]$. Further, $b / a=q_{1}+r_{1} / a$. But this means that $b / a=q_{1}+1 /\left[q_{2} ; q_{3}, \cdots, q_{k+2}\right]=\left[q_{1} ; q_{2}, \cdots, q_{k+2}\right]$, as desired.
3. (a) Find all integer solutions of $13853 x+6951 y=\operatorname{gcd}(13853,6951)$.

Solution: We start by performing the Euclidean algorithm:

$$
\begin{aligned}
13853 & =1 \cdot 6951+6902 \\
6951 & =1 \cdot 6902+49 \\
6902 & =140 \cdot 49+42 \\
49 & =1 \cdot 42+7 \\
42 & =6 \cdot 7
\end{aligned}
$$

So $\operatorname{gcd}(13853,6951)=7$. From the work we did for the Euclidean algorithm, we get an initial solution to the equation:

$$
\begin{aligned}
49-42 & =7 \\
49-(6902-140 \cdot 49) & =7 \\
141 \cdot 49-6902 & =7 \\
141 \cdot(6951-6902)-6902 & =7 \\
141 \cdot 6951-142 \cdot 6902 & =7 \\
141 \cdot 6951-142 \cdot(13853-6951) & =7 \\
283 \cdot 6951-142 \cdot 13853 & =7
\end{aligned}
$$

So we get an initial solution $x_{0}=-142$ and $y_{0}=283$. Thus every solution to the equation is given by

$$
(x, y)=\left(-142+k \frac{6951}{7}, 283-k \frac{13853}{7}\right), k \in \mathbb{Z}
$$

We simplify: the set of solutions is

$$
\{(-142+993 k, 283-1979 k) \mid k \in \mathbb{Z}\}
$$

(b) Show that $427 x+259 y=13$ has no integer solutions

Solution: By the Euclidean algorithm, $\operatorname{gcd}(427,259)=7$

$$
\begin{aligned}
427 & =1 \cdot 259+168 \\
259 & =1 \cdot 168+91 \\
168 & =1 \cdot 91+77 \\
91 & =1 \cdot 77+14 \\
77 & =5 \cdot 14+7 \\
14 & =2 \cdot 7
\end{aligned}
$$

But 7 does not divide 13, so by Bezout's lemma, $427 x+259 y=13$ has no integer solutions.
4. Suppose $a, b, c \in \mathbb{Z}, a \neq 0$. Suppose also that $c \mid a$ and $c \mid b$. Show that $c \mid \operatorname{gcd}(a, b)$.

Solution: By Bezout's lemma, there exist $x, y \in \mathbb{Z}$ such that

$$
a x+b y=\operatorname{gcd}(a, b)
$$

Since $c \mid a$ and $c \mid b$, we see that c divides the left hand side above. But that means c divides $\operatorname{gcd}(a, b)$. (We know that the greatest common divisor of a and b exists because $a \neq 0$)
5. Suppose $\operatorname{gcd}(a, b)=1, a \mid c$, and $b \mid c$. Show $a b \mid c$.

Solution: By definition, there exist $j, k \in \mathbb{Z}$ such that $a j=c$ and $b k=c$. By Bezout's lemma, there exist $x, y \in \mathbb{Z}$ such that $a x+b y=1$. Then $a x c+b y c=c$. But then $a x b k+b y a j=c$. We see that $a b$ divides the left-hand side, and so $a b$ must divide c.
6. Suppose $\operatorname{gcd}(a, b)=1$ and $a \mid b c$. Show that $a \mid c$.

Solution: We can factor a, b, and c into primes:

$$
\begin{aligned}
a & =p_{1} p_{2} \cdots p_{s} \\
b & =q_{1} q_{2} \cdots q_{t} \\
c & =r_{1} r_{2} \cdots r_{u}
\end{aligned}
$$

and so

$$
b c=q_{1} \cdots q_{t} r_{1} \cdots r_{u}
$$

First, let's discuss the idea of the proof: since $a \mid b c$, we have $p_{s} \mid b c$. Since p_{s} is prime, this means p_{s} divides one of the q 's or one of the r 's. But since $\operatorname{gcd}(a, b)=1$, we can't have $p_{s} \mid q_{i}$ for any i. Thus
$p_{s} \mid r_{j}$ for some j, which means $p_{s}=r_{j}$ for some j. We can relabel the r 's so that $p_{s}=r_{u}$. Now we have $p_{1} p_{2} \cdots p_{s-1} \mid q_{1} \cdots q_{t} r_{1} \cdots r_{u-1}$. We can repeat the process above to show that $p_{s-1}=r_{u-1}$, $p_{s-2}=r_{u-2}$, and so on, until we get

$$
r_{1} r_{2} \cdots r_{u-s} a=r_{1} r_{2} \cdots r_{u-s} p_{1} p_{2} \cdots p_{s}=r_{1} r_{2} \cdots r_{u}=c
$$

Note how I wrote "we can repeat the process above to show..."; this suggests that a truly rigorous proof would use induction. Here's how that would go:
We proceed by induction on s, the number of primes appearing in the factorization of a. If $s=1$, then we have $a=p_{1}$ is prime. Then, since $a \mid b c$ we know a has to divide b or c. But a can't divide b since $\operatorname{gcd}(a, b)=1$. Thus $a \mid c$, as desired.
Now suppose the result is true when $s=k$ and suppose $a=p_{1} p_{2} \cdots p_{k+1}$. Then $p_{k+1} \mid b c$. As I argued above, this means $p_{k+1}=r_{i}$ for some i. Without loss of generality, we may assume $p_{k+1}=r_{u}$. Then

$$
a / p_{k+1}=p_{1} p_{2} \cdots p_{k} \mid q_{1} \cdots q_{t} r_{1} \cdots r_{u-1}=b \cdot c / p_{k+1}
$$

Note that we still have $\operatorname{gcd}\left(a / p_{k+1}, b\right)=1$, since any divisor of a / p_{k+1} is certainly a divisor of a. Thus, by the induction hypothesis, this means $a / p_{k+1} \mid c / p_{k+1}$. But this means $a \mid c$, as desired.
7. Let a and b be two positive integers. Let $S=\{c \in \mathbb{N}|a| c, b \mid c\}$. Then S is nonempty, since it contains $a b$, so it has a minimal element. This minimal element is called the lowest common multiple of a and b and denoted $\operatorname{lcm}(a, b)$. Show that $\operatorname{lcm}(a, b)$ divides every other element of S. Hint: use the division algorithm.

Solution: (The problem statement should really say $S=\{c \in \mathbb{N}|a| c, b \mid c, c \neq 0\}$, so that $\operatorname{lcm}(a, b)$ isn't always 0)
Let $m=\operatorname{lcm}(a, b)$. Then there exist $x, y \in \mathbb{Z}$ such that $a x=b y=m$. Further, let n be any common multiple of a and b, so that $a t=n$ and $b u=n$ for some $t, u \in \mathbb{N}$. The division algorithm tells us that there exist unique $q, r \in \mathbb{Z}$ with $0 \leq r<m$, such that $n=q m+r$. We wish to show that $r=0$. If $r \neq 0$, then $r=n-q m$ is a nonzero common multiple of a; indeed, $n-q m=a t-q a x=a(t-q x)$ and $n-q m=b u-q b y=b(u-q y)$. But this contradicts the fact that $m=\operatorname{lcm}(a, b)$, since $r<m$.
8. Find a formula for all the points on the hyperbola

$$
x^{2}-y^{2}=1
$$

whose coordinates are rational numbers

Solution: This is a lot like what we did in class to find a formula for all the pythagorean triples. Start with any point on the hyperbola with rational coordinates, such as $(1,0)$. Suppose $\left(x_{0}, y_{0}\right)$ is some point on the hyperbola with $x_{0}, y_{0} \in \mathbb{Q}$. Then the line going through $(1,0)$ and $\left(x_{0}, y_{0}\right)$ has rational slope. Let m be the slope of this line. We're going to compute x_{0} and y_{0} in terms of m.

Then the equation of the line going through $(1,0)$ and $\left(x_{0}, y_{0}\right)$ is $y=m(x-1)$, by the point-slope formula. Thus the intersection of our line and our hyperbola is the set of solutions to the following two equations:

$$
\begin{aligned}
y & =m(x-1) \\
x^{2}-y^{2} & =1
\end{aligned}
$$

Substituting the first equation into the second one, we see that

$$
x^{2}-(m(x-1))^{2}=1
$$

In other words,

$$
\left(1-m^{2}\right) x^{2}+2 m^{2} x-m^{2}-1=0
$$

Now, we know that $(1,0)$ is one of the points where our line intersects our hyperbola. Thus $x=1$ is a solution to the above equation, but it's not the solution we're looking for. So we can divide the above polynomial by $x-1$:

$$
\frac{\left(1-m^{2}\right) x^{2}+2 m^{2} x-m^{2}-1}{x-1}=\left(1-m^{2}\right) x+m^{2}+1
$$

so we must have $\left(1-m^{2}\right) x_{0}+m^{2}+1=0$. Thus, we must have $m \neq 1$ (or else our equation says $2=0$), so

$$
x_{0}=\frac{m^{2}+1}{m^{2}-1}
$$

and

$$
y_{0}=m x-m=\frac{m^{3}+m}{m^{2}-1}+\frac{-m^{3}+m}{m^{2}-1}=\frac{2 m}{m^{2}-1}
$$

We have shown that every point with rational coordinates (usually just called a rational point) on our hyperbola $x^{2}-y^{2}=1$ is of the form

$$
\left(\frac{m^{2}+1}{m^{2}-1}, \frac{2 m}{m^{2}-1}\right)
$$

for some $m \in \mathbb{Q}$ with $m \neq 1$. Now we have to check: is this point actually on the hyperbola for all $m \in \mathbb{Q} \backslash\{1\}$? The answer is yes:

$$
\left(\frac{m^{2}+1}{m^{2}-1}\right)^{2}-\left(\frac{2 m}{m^{2}-1}\right)^{2}=\frac{m^{4}+2 m^{2}+1-4 m^{2}}{m^{4}-2 m^{2}+1}=1
$$

for all $m \in \mathbb{Q}$ with $m \neq 1$.

