Math 4400 Homework 2

Due: Wednesday, May 31st, 2017 (Quiz on Friday)

Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a note of who you worked with on each problem. Let me know if you find a typo, or you're stuck on any of the problems.

1. Let a_{1}, \ldots, a_{n} be nonzero integers, with $n \geq 2$. We define the greatest common denominator of this n-tuple recursively:

$$
\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=\operatorname{gcd}\left(\operatorname{gcd}\left(a_{1}, \ldots, a_{n-1}\right), a_{n}\right)
$$

and $\operatorname{gcd}\left(a_{1}, a_{2}\right)$ is the usual gcd. Prove the following generalization of Bezout's lemma: the equation

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

has a solution with $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ if and only if b is divisible by $\operatorname{gcd}\left(x_{1}, \ldots, x_{n}\right)$.
2. Prove the theorem we mentioned in class about how to get continued fractions expansions from the Euclidean algorithm. Namely, suppose $a, b \in \mathbb{Z}$ are integers with $a, b \geq 1$. Suppose the Euclidean algorithm applied to a and b goes as

$$
\begin{gathered}
b=q_{1} a+r_{1} \\
a=q_{2} r_{1}+r_{2} \\
\vdots \\
r_{n-1}= \\
q_{n+1} r_{n}
\end{gathered}
$$

for some $n \geq 0$. Show that $\frac{b}{a}=\left[q_{1} ; q_{2}, \ldots, q_{n+1}\right]$
3. (a) Find all integer solutions of $13853 x+6951 y=\operatorname{gcd}(13853,6951)$.
(b) Show that $427 x+259 y=13$ has no integer solutions
4. Suppose $a, b, c \in \mathbb{Z}, a \neq 0$. Suppose also that $c \mid a$ and $c \mid b$. Show that $c \mid \operatorname{gcd}(a, b)$.
5. Suppose $\operatorname{gcd}(a, b)=1, a \mid c$, and $b \mid c$. Show $a b \mid c$.
6. Suppose $\operatorname{gcd}(a, b)=1$ and $a \mid b c$. Show that $a \mid c$.
7. Let a and b be two positive integers. Let $S=\{c \in \mathbb{N}|a| c, b \mid c\}$. Then S is nonempty, since it contains $a b$, so it has a minimal element. This minimal element is called the lowest common multiple of a and b and denoted $\operatorname{lcm}(a, b)$. Show that $\operatorname{lcm}(a, b)$ divides every other element of S. Hint: use the division algorithm.
8. Find a formula for all the points on the hyperbola

$$
x^{2}-y^{2}=1
$$

whose coordinates are rational numbers

