Math 4400 Homework 2

Due: Wednesday, May 31st, 2017 (Quiz on Friday)

Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a note of who you worked with on each problem. Let me know if you find a typo, or you're stuck on any of the problems.

1. Let a_1, \ldots, a_n be nonzero integers, with $n \ge 2$. We define the greatest common denominator of this *n*-tuple recursively:

 $gcd(a_1,\ldots,a_n) = gcd(gcd(a_1,\ldots,a_{n-1}),a_n)$

and $gcd(a_1, a_2)$ is the usual gcd. Prove the following generalization of Bezout's lemma: the equation

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

has a solution with $x_1, \ldots, x_n \in \mathbb{Z}$ if and only if b is divisible by $gcd(x_1, \ldots, x_n)$.

2. Prove the theorem we mentioned in class about how to get continued fractions expansions from the Euclidean algorithm. Namely, suppose $a, b \in \mathbb{Z}$ are integers with $a, b \geq 1$. Suppose the Euclidean algorithm applied to a and b goes as

$$b = q_1 a + r_1$$
$$a = q_2 r_1 + r_2$$
$$\vdots$$
$$-1 = q_{n+1} r_n$$

for some $n \ge 0$. Show that $\frac{b}{a} = [q_1; q_2, \dots, q_{n+1}]$

3. (a) Find all integer solutions of $13853x + 6951y = \gcd(13853, 6951)$.

(b) Show that 427x + 259y = 13 has no integer solutions

4. Suppose $a, b, c \in \mathbb{Z}$, $a \neq 0$. Suppose also that $c \mid a$ and $c \mid b$. Show that $c \mid \gcd(a, b)$.

 r_n

- 5. Suppose gcd(a, b) = 1, $a \mid c$, and $b \mid c$. Show $ab \mid c$.
- 6. Suppose gcd(a, b) = 1 and $a \mid bc$. Show that $a \mid c$.
- 7. Let a and b be two positive integers. Let $S = \{c \in \mathbb{N} | a | c, b | c\}$. Then S is nonempty, since it contains ab, so it has a minimal element. This minimal element is called the *lowest common multiple* of a and b and denoted $\operatorname{lcm}(a, b)$. Show that $\operatorname{lcm}(a, b)$ divides every other element of S. Hint: use the division algorithm.
- 8. Find a formula for all the points on the hyperbola

$$x^2 - y^2 = 1$$

whose coordinates are rational numbers