Math 4400 Homework 1

Due: Monday, May 22nd, 2017

Feel free to work with your classmates, but everyone must turn in their own assignment. Please make a note of who you worked with on each problem. Also, please give me an estimate of how long this assignment took to complete.

Let me know if you find a typo, or you're stuck on any of the problems.

1. Prove the following statements:
(a) $\sum_{k=1}^{n} \frac{1}{k^{2}} \leq 2-\frac{1}{n}$, for all integers $n \geq 1$.

Solution: Base case: $n=1$. Here we check that

$$
\sum_{k=1}^{1} \frac{1}{k^{2}}=1 \leq 2-\frac{1}{1}=1
$$

Induction step: suppose that

$$
\sum_{k=1}^{m} \frac{1}{k^{2}} \leq 2-\frac{1}{m}
$$

for some natural number $m \geq 1$. Then

$$
\sum_{k=1}^{m+1} \frac{1}{k^{2}}=\sum_{k=1}^{m} \frac{1}{k^{2}}+\frac{1}{(m+1)^{2}} \leq 2-\frac{1}{m}+\frac{1}{(m+1)^{2}}
$$

so it suffices to show that

$$
-\frac{1}{m}+\frac{1}{(m+1)^{2}} \leq-\frac{1}{m+1}
$$

We multiply each side of this inequality by $m(m+1)^{2}$, so that we just have to show

$$
-(m+1)^{2}+m \leq-(m+1) m
$$

(note that $m(m+1)^{2}$ is positive, so we don't have to flip the inequality). Expanding out the left- and right-hand sides above, we've reduced the problem to showing

$$
-m^{2}-m-1 \leq-m^{2}-m
$$

for all $m \geq 1$, which is obviously true.
(b) $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$, for all integers $n \geq 1$

Solution: Base case: $n=1$, in which case we check:

$$
\sum_{k=1}^{1} k^{2}=1, \text { and } \frac{1(1+1)(2 \cdot 1+1)}{6}=1
$$

Induction step: let m be a natural number with $m \geq 1$. Suppose that

$$
\sum_{k=1}^{m} k^{2}=\frac{m(m+1)(2 m+1)}{6}
$$

Then

$$
\sum_{k=1}^{m+1} k^{2}=\frac{m(m+1)(2 m+1)}{6}+(m+1)^{2}
$$

So we wish to show that

$$
\frac{m(m+1)(2 m+1)}{6}+(m+1)^{2}=\frac{(m+1)(m+2)(2 m+3)}{6}
$$

Multiplying both sides by $6 /(m+1)$ (and noting that $m+1 \neq 0$), we've reduced the problem to proving that

$$
m(2 m+1)+6(m+1)=(m+2)(2 m+3)
$$

which is easy enough to check.
(c) $\prod_{k=1}^{n}\left(1+\frac{1}{k}\right)=n+1$, for all integers $n \geq 1$, where $\prod_{i=1}^{n} a_{i}=a_{1} a_{2} \cdots a_{n}$ denotes the product

Solution: Base case: $n=1$. In this case, we see $1+\frac{1}{1}=1+1$, as desired.
Induction step: suppose

$$
\prod_{k=1}^{m}\left(1+\frac{1}{k}\right)=m+1
$$

for some natural number $m \geq 1$. Then

$$
\prod_{k=1}^{m+1}=(m+1) \cdot\left(1+\frac{1}{m+1}\right)=(m+1) \frac{m+2}{m+1}=m+2
$$

as desired
2. The following is an argument that all cows are the same color. We prove this by induction, by setting $P(n)=$ "any collection of n cows all have the same color". Clearly, $P(1)$ is true since every cow is the same color as itself. Now let $k \geq 1$ be a natural number and suppose $P(k)$ is true and let S be a set of $k+1$ cows, numbered $1,2, \ldots, k+1$. Then cows 1 through k are all the same color, and cows 2 through $k+1$ are all the same color, by the induction hypothesis. But this means all $k+1$ of our cows are the same color, so we've proven $P(k+1)$. By induction, we've shown $P(n)$ is true or all n, and in particular when n is the number of cows on earth. So we've shown that all cows must be the same color.
Now, a quick google search shows that there are different colors of cows in the world. What's wrong with the argument above?

Solution: The base case is fine. The problem is with the induction step: it doesn't work if $k=1$. Indeed, in that case, $S=\left\{c_{1}, c_{2}\right\}$ for some cows c_{1} and c_{2}. Then $\left\{c_{1}\right\}$ is a set of cows that are all the same color, and $\left\{c_{2}\right\}$ is a set of cows that are all the same color, but there's no reason why c_{1} and c_{2} should be the same color as each other, since the sets $\left\{c_{1}\right\}$ and $\left\{c_{2}\right\}$ have an empty intersection in this case. (Note that $P(k)$ does imply $P(k+1)$ when $k>1$!)
3. (a) Prove that any finite, non-empty subset of \mathbb{Z} has a minimum.

Solution: Solution 1: Let $S \subseteq \mathbb{Z}$ be nonempty. If $S \subseteq N$, then we're done by the well-ordering principle, so we can assume that S contains a negative integer. Let $T=\{x \in S \mid s<0\}$. Then $T \subseteq S$, so T is finite, and we can define N to be

$$
N=\sum_{x \in T} x
$$

Then let $T^{\prime}=\{x-N \mid x \in T\}$. Note that, for all $y \in T$, we have

$$
y-N=\sum_{x \in T, x \neq y}(-x) \geq 0
$$

since $x<0$ for all $x \in T$. Thus $T^{\prime} \subseteq \mathbb{N}$, so T^{\prime} has a minimal element by the well-ordering principle. Call this minimal element y_{0}. Then $y_{0}+N \in T$. I claim that $y_{0}+N$ is the minimal element of T. To show this, suppose $x \in T$. Then $x-N \in T^{\prime}$. This means $x-N \geq y_{0}$ since y_{0} is the minimal element of T^{\prime}. But this means $x \geq y_{0}+N$, as desired.
Now let $x \in S$ be arbitrary. If $x<0$, then $x \in T$, so $y_{0}+N \leq x$. If $x \geq 0$, then $y_{0}+N<0 \leq x$ (remember, $y_{0}+N \in T$, which is the set of negative elements of S). So $y_{0}+N$ is the minimal element of S.
Solution 2 (sketch) Do induction on the size of S. If $|S|=1$, then it only has one element, and that's the minimal element of S. For the induction step, suppose the proposition is true for sets of size n, and suppose $|S|=n+1$. Then pick some element $x \in S$ and set $S^{\prime}=S \backslash\{x\}$. Then S^{\prime} has a minimal element; call it y. If $x<y$, then x is the minimal element of S. Otherwise, y is the minimal element of S. In either case, S has a minimal element.
(b) Use part (a) to show that any finite, non-empty subset of \mathbb{Z} has a maximum.

Solution: Let $S \subseteq \mathbb{Z}$ be a finite, nonempty subset of \mathbb{Z}. Let $T=\{-x \mid x \in S\}$. Then T has a minimal element by part a; call it y. Then $-y \in S$. Now let $x \in S$ be arbitrary. Then $-x \in T$ and $y \leq-x$. But then $-y \geq x$. So $-y$ is the maximal element of S, so S has a maximal element.
(c) Use part (b) to show that if $a, b \in \mathbb{Z}$ and $a \neq 0$, then $\operatorname{gcd}(a, b)$ exists and is unique.

Solution: We wish to show that there is a maximal integer c such that $c \mid a$ and $c \mid b$. In other words, we wish to show that the set

$$
S=\{c \in \mathbb{Z}|c| a, c \mid b\}
$$

has a maximal element. By part b, it's enough to show that S is nonempty and finite. We have $1 \cdot a=a$ and $1 \cdot b=b$, so $1 \in S$ and S is nonempty. Let

$$
T=\{c \in \mathbb{Z}|c| a\}
$$

Then $S \subseteq T$, so it's enough to show that T is finite. Now, if $c \mid a$, then $c \cdot d=a$ for some $d \in \mathbb{Z}$, and so $|c| \cdot|d|=|a|$. But $a \neq 0$, so $d \neq 0$, so $|d| \geq 1$. But this means $|c|=|a| /|d| \leq|a|$. Thus

$$
T \subseteq\{c \in \mathbb{Z} \mid-a \leq c \leq a\}
$$

and the set on the right is finite.
To show uniqueness, suppose S has two maximum elements x and x^{\prime}. Then, by defnition, $x \geq x^{\prime}$ and $x^{\prime} \geq x$, so $x=x^{\prime}$.
4. Compute the following gcd's using the euclidean algorithm:
(a) $\operatorname{gcd}(1084,412)$

Solution:

$$
\begin{aligned}
1084 & =2 \cdot 412+260 \\
412 & =1 \cdot 260+152 \\
260 & =1 \cdot 152+108 \\
152 & =1 \cdot 108+44 \\
108 & =2 \cdot 44+20 \\
44 & =2 \cdot 20+4 \\
20 & =5 \cdot 4
\end{aligned}
$$

So the gcd is 4 .
(b) $\operatorname{gcd}(1979,531)$

Solution:

$$
\begin{aligned}
1979 & =3 \cdot 531+386 \\
531 & =1 \cdot 386+145 \\
386 & =2 \cdot 145+96 \\
145 & =1 \cdot 96+49 \\
96 & =1 \cdot 49+47 \\
49 & =1 \cdot 47+2 \\
47 & =23 \cdot 2+1 \\
2 & =2 \cdot 1
\end{aligned}
$$

So the gcd is 1
(c) $\operatorname{gcd}(305,185)$

Solution:

$$
\begin{aligned}
305 & =1 \cdot 185+120 \\
185 & =1 \cdot 120+65 \\
120 & =1 \cdot 65+55 \\
65 & =1 \cdot 55+10 \\
55 & =5 \cdot 10+5 \\
10 & =2 \cdot 5
\end{aligned}
$$

So the gcd is 5 .
5. Use your work for the above exercise to compute the continued fractions expansions of the following:
(a) $\frac{1084}{412}$

Solution:

$$
\frac{1084}{412}=[2 ; 1,1,1,2,4,1,4]
$$

(b)

$\frac{1979}{531}$

Solution:

$$
[3 ; 1,2,1,1,1,23,2]
$$

(c) $\frac{305}{185}$

Solution:

$[1 ; 1,1,1,5,2]$

6. Find the continued fraction expansion of $\sqrt{7}$ and prove it's periodic. (Hint: we learned in class that $\sqrt{7}$ should have a periodic continued fraction. Use a computer or a calculator to guess what it should be, then see if you can prove that's the case by showing $\sqrt{7}-2$ appears in its own continued fraction expansion, kind of like what we did in class for $\sqrt{2}$)

Solution: By running the continued fraction algorithm for a few iterations, we see that the continued fraction expansion of $\sqrt{7}$ begins $[2 ; 1,1,1,4,1,1,1,4, \ldots]$. To prove $\sqrt{7}=[2 ; \overline{1,1,1,4}]$, it's enough to show that $\sqrt{7}-2=[0 ; \overline{1,1,1,4}]$. For this, it's enough to show that:

$$
\sqrt{7}-2=\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{4+\sqrt{7}-2}}}}
$$

We simplify the right-hand side a few times:

$$
\begin{aligned}
\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{4+\sqrt{7}-2}}}} & =\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{2+\sqrt{7}}{3+\sqrt{7}}}}} \\
& =\frac{1}{1+\frac{3+\sqrt{7}}{5+2 \cdot \sqrt{7}}} \\
& =\frac{5+2 \sqrt{7}}{8+3 \sqrt{7}}
\end{aligned}
$$

and it's easy enough to check that

$$
\sqrt{7}-2=\frac{5+2 \sqrt{7}}{8+3 \sqrt{7}}
$$

