Math 4400 Homework 0 (Solutions)

Due: Wednesday, May 17, 2017

1. Linear algebra: Let A be an $n \times n$-matrix with real entries, for some positive integer n. Suppose also that A is invertible. Show that $\operatorname{det}(A) \neq 0$. (Hint: if B is any other $n \times n$-matrix, then $\operatorname{det}(A B)=$ $\operatorname{det}(A) \cdot \operatorname{det}(B)$.)

Since A is invertible, it has an inverse, A^{-1}, such that $A A^{-1}=I$. Then $\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(I)=1$. But $\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)$. So we have $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$. But this is impossible if $\operatorname{det}(A)=0$, so we must have $\operatorname{det}(A) \neq 0$
2. Let $i=\sqrt{-1}$. What's i^{2017} ? (Hint: start by simplifying $i, i^{2}, i^{3}, i^{4}, i^{5}, \ldots$ and see if you can find a pattern!)

Since $i^{4}=1$, and $2017=2016+1=4 \cdot 504+1$, we see that

$$
i^{2017}=\left(i^{4}\right)^{504} \cdot i^{1}=1^{504} \cdot i^{1}=i
$$

3. Some Set Theory: Let A and B be two sets. Recall the following notation:

- " \in " is read "in". So " $x \in A$ " is read " x is in A " or " x is an element of A ".
- $A \cap B$ denotes the intersection of A and B, i.e. the set of things that are in A and also in B.
- $A \cup B$ denotes the union of A and B, i.e. the set of things that are in A or in B (or both).
- $A \backslash B$ denotes the relative complement, or set difference of B in A, i.e. the set of things that are in A but not in B.

Now answer the following:
(a) Let $A=\{1,2,3,4,5,6\}$ and $B=\{4,5,6,7,8,9,10\}$. Find $A \cap B, A \cup B$, and $A \backslash B$.

$$
A \cap B=\{4,5,6\}, A \cup B=\{1,2,3, \cdots, 10\}, \text { and } A \backslash B=\{1,2,3\}
$$

(b) Now let A, B, and C be any sets. Prove the following equality:

$$
(A \cup B) \cap C=(A \cap C) \cup(B \cap C)
$$

Let x be an arbitrary element of $(A \cup B) \cap C$. Then $x \in A \cup B$ and also $x \in C$. This gives us two possibilities: either $x \in A$ or $x \in B$. If $x \in A$, then we have $x \in A$ and also $x \in C$, so that would mean $x \in A \cap C$. Similarly, if $x \in B$, then $x \in B \cap C$. So we've shown that $x \in A \cap C$ or $x \in B \cap C$. In other words, $x \in(A \cap C) \cup(B \cap C)$. Thus, we have shown

$$
(A \cup B) \cap C \subseteq(A \cap C) \cup(B \cap C)
$$

To show the other inclusion, let y be an arbitrary element of $(A \cap C) \cup(B \cap C)$. Then either $y \in A \cap C$ or $y \in B \cap C$. In other words, either:

- y is in A and in C, or
- y is in B and in C.

Thus, $y \in A$ or $y \in B$. But no matter what, we have $y \in C$. In other words, $y \in(A \cup B) \cap C$.
4. Let $v \in \mathbb{R}^{2}$ and $w \in \mathbb{R}^{2}$ be two vectors. For any vector a, let $\|a\|$ denote the length of a. Prove the following inequality:

$$
\|v+w\| \leq\|v\|+\|w\|
$$

We can write $v=\left\langle v_{1}, v_{2}\right\rangle$ and $w=\left\langle w_{1}, w_{2}\right\rangle$ for some real numbers $v_{1}, v_{2}, w_{1}, w_{2} \in \mathbb{R}$. By definition,

$$
\begin{aligned}
\|v+w\| & =\sqrt{\left(v_{1}+w_{1}\right)^{2}+\left(v_{2}+w_{2}\right)^{2}} \\
& =\sqrt{v_{1}^{2}+2 v_{1} w_{1}+w_{1}^{2}+v_{2}^{2}+2 v_{2} w_{2}+w_{2}^{2}}
\end{aligned}
$$

and

$$
\|v\|+\|w\|=\sqrt{v_{1}^{2}+v_{2}^{2}}+\sqrt{w_{1}^{2}+w_{2}^{2}}
$$

Now, we know that $\|v+w\| \geq 0$ and $\|v\|+\|w\| \geq 0$, and furtner, the function $f(x)=x^{2}$ is increasing when $x \geq 0$. This means that

$$
\|v+w\| \leq\|v\|+\|w\|
$$

if and only if

$$
\|v+w\|^{2} \leq(\|v\|+\|w\|)^{2}
$$

Thus, it's enough to show that

$$
v_{1}^{2}+2 v_{1} w_{1}+w_{1}^{2}+v_{2}^{2}+2 v_{2} w_{2}+w_{2}^{2} \leq v_{1}^{2}+v_{2}^{2}+2 \sqrt{v_{1}^{2}+v_{2}^{2}} \sqrt{w_{1}^{2}+w_{2}^{2}}+w_{1}^{2}+w_{2}^{2}
$$

By cancelling stuff out from either side, we see that it's enough to prove that

$$
v \bullet w \leq\|v\| \cdot\|w\|
$$

where $v \bullet w$ denotes the dot product. This inequality follows from the formula

$$
v \bullet w=\|v\| \cdot\|w\| \cos \theta
$$

where θ is the angle between v and w, since $-1 \leq \cos \theta \leq 1$.

