
Tying up Loose Ends
Math 4400, Summer 2017

These notes are meant to supplement the course text. They discuss some basic ring/group
theory that is used later in the book, but not really discussed anywhere in detail.

1 Polynomial rings

Let R be a ring. For simplicity’s sake, we’ll assume always assume that R is commutative
in these notes. We can use R to build a new ring, called the ring of polyonomials over
R, and denoted R[X]. As a set, R[X] is defined to be:

R[X] =

{
n∑

i=0

aiX
i

∣∣∣∣∣ n ∈ N, and ai ∈ R for all i

}

Addition and multiplication in R[X] are defined in the usual way that we define addition
and multiplication of polynomials: if f =

∑n
i=0 aiX

i and g =
∑m

i=0 biX
i, then

f + g =

max(m,n)∑
i=0

(ai + bi)X
i f · g =

m+n∑
i=0

i∑
j=0

ajbi−jX
i

(we define ai = 0 for i > n and bi = 0 for i > m)
If f =

∑n
i=0 aiX

i is an element ofR[X], then the degree of f is defined to be max {i ∈ N | ai 6= 0}.
If ai = 0 for all i, then f = 0R, and the degree of f is defined to be −∞. The degree of f
is denoted deg f . If n = deg f ≥ 0, then an is called the leading coefficient of f .

Example. Z[X] is the set of polynomials with integer coefficients. Elements include 3X5−6
and X + 1. As usual,

(3X5 − 6) + (X + 1) = 3X5 +X − 5

and
(3X5 − 6) · (X + 1) = 3X6 + 3X5 − 6X − 6

Example. Let R = Z/5Z. Then R[X] is the set of polynomials with coefficients in Z/5Z.
For instance, [1]X2 + [2] and [3]X3 + [4]X2 + [1]X are elements of R[X]. In this ring,

([1]X2 + [2]) + ([3]X3 + [4]X2 + [1]X) = [3]X3 + [5]X2 + [1]X + [2]

But [5] = [0] in Z/5Z, so

([1]X2 + [2]) + ([3]X3 + [4]X2 + [1]X) = [3]X3 + [0]X2 + [1]X + [2]

It’s a little silly to write things this way, though. Usually we omit the “[0]X2” and the [1]s:

(X2 + [2]) + ([3]X3 + [4]X2 +X) = [3]X3 +X + [2]
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Similarly,

([1]X2 + [2]) · ([3]X3 + [4]X2 + [1]X) = X2 · ([3]X3 + [4]X2 +X) + [2] · ([3]X3 + [4]X2 +X)

= [3]X5 + [4]X4 + [7]X3 + [8]X2 + [2]X

= [3]X5 + [4]X4 + [2]X3 + [3]X2 + [2]X

Example. Let R = Z/2Z. Then X + [1] ∈ R/2Z and

(X + [1])2 = X2 + [2]X + [1] = X2 + [1]

Given a polynomial f ∈ R[X], we can “plug in” elements of R into f as usual. More

precisely, f defines a function f̃ : R → R, defined as follows: if f =
∑n

i=0 aiX
i and r ∈ R,

then f̃(r) =
∑n

i=0 air
i ∈ R. The ring element f̃(r) is called the evaluation of f at r

Remark. I don’t think anyone else actually uses the notation f̃ . Usually, the function
corresponding to a polynomial f is just denoted by f as well. I used the notation f̃ to
emphasize that polynomials and their corresponding functions are not the same thing. This
is a confusing, but important point. In fact, it’s worth repeating:

Caution. A polynomial f ∈ R[X] and its corresponding function f̃ : R → R are
different things. Moreover, different polynomials can have the same corresponding
function! For example, let p be a prime number, and let R = Z/pZ. Then f = Xp +[−1]X
and g = [0] are two different elements of R[X]. However, Fermat’s little theorem tells us

that rp = r for all r ∈ Z/pZ. Thus f̃(r) = rp + [−1]r = r − r = [0] for all r ∈ Z/pZ. On

the other hand g̃(r) = [0] for all r ∈ Z/pZ. So f̃ and g̃ are the same function, even though
f and g are different polynomials!

Let R be a ring, and f a polynomial in R[X]. An element r of R is called a root of f if

f̃(r) = 0R. Our next goal is to prove the following, very important theorem:

Theorem 1.1 (Important theorem!). Let k be a field, and let f ∈ k[X]. If d = deg f , then
f has at most d roots in k.

To prove this, we start by noting that there’s a division algorithm for polynomials over
a field:

Lemma 1.2. Let k be a field and let f, g ∈ k[X] with f, g 6= 0. Then there exist unique
q, r ∈ k[X] such that deg r < deg g, and f = qg + r.

The proof of this lemma is essentially the same as the proof of the division algorithm for
integers, so I’ll postpone it until the end of the section for those who are interested. We’ll
also need the following two lemmas:

Lemma 1.3. Let f ∈ k[X] and suppose α is a root of f . Then f = g · (X − α) for some
g ∈ k[X]
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Proof. By Lemma 1.2, there exist g, r ∈ k[X] such that

f = g · (X − α) + r (1)

and deg r < deg(X−α) = 1. Thus deg r = 0 or deg r = −∞. In either case, we know r ∈ k.
Then, evaluating both sides of equation 1 at α, we get

f(α) = g(α)(α− α) + r(α) = g(α) · 0 + r = r

But α is a root of f , so f(α) = 0. Thus r = 0 and f = g · (X − α).

Lemma 1.4. Let R be a commutative ring without zero divisors (e.g. R can be any field),
and let f, g ∈ R[X]. Then deg(f · g) = deg(f) + deg(g).

Proof. We define n · −∞ = −∞ · n for all n ∈ N, and this takes care of the case that f = 0
or g = 0. So assume f 6= 0 and g 6= 0. So let deg f = n ≥ 0 and deg g = m ≥ 0. Then we
can write f =

∑n
i=0 aiX

i and g =
∑m

i=0 biX
i for some ai, bi ∈ R. Then f · g =

∑m+n
i=0 ciX

i,
where

ci =

i∑
j=0

ajbi−j

for all i. Thus cn+m = anbm 6= 0, since an 6= 0, bm 6= 0, and R doesn’t have zero-divisors.
This proves the lemma.

Caution. This lemma doesn’t hold for polynomials over an arbitrary ring. For instance,
let R = Z/6Z. If f = 2X2 + 1 and g = 3X are elements of R[X], then fg = 3X, so
deg(fg) = 1 < deg f + deg g. In general, if R is any ring and f and g are any elements of
R[X], the most we can say is that deg(fg) ≤ deg f + deg g.

Proof of Theorem 1.1. We prove this by induction on the degree of f . If deg f = 0, then f
is some nonzero constant, so it has no roots. Now let d ∈ N and suppose the theorem is true
for polynomials of degree d. Let f be a polynomial of degree d+ 1. We wish to show that
f has at most d + 1 roots. If f has no roots, then we’re done since 0 ≤ d + 1. Otherwise,
f has some root r. By Lemma 1.3, we can write f = g · (X − r) for some polynomial g.
By Lemma 1.4, we have deg g + 1 = deg f , so deg g = d. Now suppose that s is a root of
f . That means f(s) = g(s) · (s − r) = 0. Since k is a field, this means either g(s) = 0 or
s− r = 0. In other words, either s is a root of g or s = r. Thus the set of all roots of f is
{roots of g} ∪ {r}. But, by the inductive hypothesis, g has at most d roots. Thus f has at
most d+ 1 roots

1.1 Division algorithm

Here we prove the division algorithm for polynomials over a ring. Here is its most general
guise:

Theorem 1.5 (Division algorithm for polynomials). Let R be a commutative ring without
zero-divisors, and let f, g ∈ R[X]. If the leading coefficient of g has a multiplicative inverse
in R, then there exist unique q, r ∈ R[X] such that f = gq + r, and deg r < deg g.
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Proof. First we consider the issue of existence. If f = gq for some q ∈ R[X], then we’re
done, so we may assume that f 6= gq for any q ∈ R[X]. Then consider the set S =
{deg(f − gh) | h ∈ R[X]}. This is a nonempty subset of the natural numbers. By the well-
ordering principle, S must have a minimal element d. Let h0 ∈ R[X] be the polynomial such
that deg(f − gh0) = d, and set r = f − gh0. I claim that deg r < deg g. To see this, suppose
otherwise. Set n = deg g. Then g = anX

n + an−1X
n−1 + · · ·+ a0 for some a0, · · · , an ∈ R.

By assumption, an is invertible in R. Similarly, r = bdX
d + bd−1X

d−1 + · · · + b0 for some
b0, · · · , bd ∈ R. Let r′ = r − a−1n bdX

d−ng. Then r′ has degree at most d, even though
r′ = f − g

(
h+ a−1n bdX

d−n) is of the form f minus something times g. This contradicts the
minimality of deg r and proves existence.

As for uniqueness, suppose q1g + r1 = q2g + r2, with deg r1,deg r2 < deg g. Then
g(q1 − q2) = r1 − r2, so either r1 − r2 = 0 or deg(r1 − r2) ≥ deg g. But deg(r1 − r2) ≤
max(deg r1,deg r2) < g. Thus r1 = r2, and so g(q1 − q2) = 0. Since deg g > −∞, Lemma
1.4 tells us that q1 = q2. This proves uniqueness.

Note that fields are commutative rings without zero-divisors, so the above theorem holds
whenever R is a field. In that case, g can be any nonzero polynomial, and the hypotheses
on g will be satisfied.

2 Groups, rings, and functions

Our next object of study is the set of functions between two groups. Consider the groups
(Z/3Z,+) and (Z/9Z,+). There are many functions from one set to the other. For instance,
we could define a function f : Z/3Z → Z/9Z by setting f([0]3) = [4]9, f([1]3) = [7]9, and
f([2]3) = [2]9. However, most functions, like the one above, are not very interesting—they
have nothing to do with the group structures on Z/3Z and Z/9Z! On the other hand, some
functions are nice. For instance, the following function,

f : Z/3Z→ Z/9Z, [n]3 7→ [3n]9

is a nice function: for instance, it satisfies

f(a+ b) = f(a) + f(b)

for all a, b ∈ Z/3Z. We give a special name to such functions:

Definition 1. Let (G, ·) and (H, ∗) be two groups. A group homomorphism from G to
H is a function f : G→ H satisfying

f(g1 · g2) = f(g1) ∗ f(g2)

for all g1, g2 ∈ G.

A homomorphism is a lot like a linear transformation from linear algebra.

Example. The function f : Z → Z, given by f(x) = 3x, is a homomorphism from (Z,+)
to itself. Indeed,

f(a+ b) = 3(a+ b) = 3a+ 3b = f(a) + f(b)
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Example. The function f : Z → Z given by f(n) = n + 1 is not a homomorphism, as
f(a+ b) 6= f(a) + f(b). Indeed, for all a, b ∈ Z, f(a+ b) = a+ b+ 1, whereas f(a) + f(b) =
a+ 1 + b+ 1 = a+ b+ 2.

Example. The set P = {x ∈ R | x > 0} forms a group under multiplication. The function
f : Z → P given by f(n) = exp(n) is a homomorphism, as f(n + m) = exp(n + m) =
exp(n) · exp(m) for all n,m ∈ Z.

Example. Let (G, ·) and (H, ∗) be two groups, and let eH be the identity element of H.
Then the function, f : G → H sending each element of G to eH is a homomorphism.
Indeed, for all g1, g2 ∈ G, f(g1 · g2) = eH and f(g1) ∗ f(g2) = eH ∗ eH = eH . Thus
f(g1 · g2) = f(g1) ∗ f(g2), so f is a homomorphism.

Similarly, a “nice” function between two rings is also called a homomorphism. Rings
have more structure than groups, however, so a function between two rings has to satisfy
more requirements to be considered “nice”:

Definition 2. Let (R,+R, ·R) and (S,+S , ·S) be two rings. Then a function f : R → S is
called a ring homomorphism if:

• f(r1 +R r2) = f(r1) +S f(r2)

• f(r1 ·R r2) = f(r1) ·S f(r2),

• f(1R) = 1S

Example. Let n be a positive integer. Then the function f : Z → Z/nZ, x 7→ [x]n is a
ring homomorphism. Indeed, f(x + y) = [x + y]n = [x]n + [y]n = f(x) + f(y), f(x · y) =
[x ·y]n = [x]n · [y]n = f(x) ·f(y), and f(1) = [1]n, which is indeed the multiplicative identity
of Z/nZ.

Example. Let k be a field of characteristic p. The frobenius map Frob : k → k, defined as
Frob(x) = xp, is a ring homomorphism from k to itself.

2.1 Isomorphisms

Sometimes two groups can really be the same, even if they look different. For instance,
consider the following two groups: one group is Z/4Z under addition, and the other is the
set, G = {I, A,B,C} under matrix multiplication, where

A =

(
1 0
0 1

)
, B =

(
0 −1
1 0

)
, C =

(
−1 0
0 −1

)
, D =

(
0 1
−1 0

)
.

Clearly, Z/4Z and G are two different sets, so Z/4Z and G are not literally the same group.
However, they have quite a similar structure:

+ [0] [1] [2] [3]

[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

· I A B C

I I A B C
A A B C I
B B C I A
C C I A B
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These two tables are basically the same table but labeled differently: if you take the table
on the left and replace each [0] with an I, each [1] with A, each [2] with B, and each [3] with
C, then you get the table on the right. In this sense, the groups G and Z/4Z have exactly
the same “structure.” This leads to the following deinitions:

Definition 3. Let G and H be two groups. A function f : G → H is called a group
isomorphism if:

• f is a group homomorphism, and

• f is a bijection

We define ring isomorphisms in exactly the same way: just replace each instance of
“group” in the definition above with “ring”. Two groups/rings are said to be isomorphic
if there exists an isomorphism from one to the other. This means they have the same
structure.

Example. In the example above (right before the definition), the function f : Z/4Z → G
defined by f([0]) = I, f([1]) = A, f([2]) = B, f([3]) = C is an isomorphism: clearly, f a
bijection, and our discussion above about the multiplication tables of Z/4Z and G shows
that f is a homomorphism. Thus, Z/4Z and G are isomorphic. We usually use the symbol
∼= to mean “isomorphic”. So we write Z/4Z ∼= G.

Example. Let R be the group of real numbers under addition, and let R+ be the group
of positive real numbers under multiplication. Then the function exp : R → R+ is an
isomorphism. This function is a homomorphism, since exp(a + b) = exp(a) · exp(b) for all
a, b ∈ R, so we just have to show exp is a bijection. In other words, given any y ∈ R+, we
must show there exists a unique x ∈ R such that exp(x) = y. This unique x is given by
ln(y), so we’re done.
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