Injections, Surjections, and Bijections

Math 4400, Summer 2017
Let S and T be two nonempty sets.
Definition. A function $f: S \rightarrow T$ is said to be one-to-one, or injective, if different inputs get sent to different outputs. More formally, f is injective if it satisfies: $\forall s_{1}, s_{2} \in S$, if $f\left(s_{1}\right)=f\left(s_{2}\right)$, then $s_{1}=s_{2}$. An "injection" is an injective function.

Example. Suppose $S=\{1,2,3\}$ and $T=\{a, b, c, d\}$. Then the map $f: S \rightarrow T$ defined by $f(1)=a$, $f(2)=b$, and $f(3)=c$ is injective. The map $g: S \rightarrow T$ defined by $g(1)=a, g(2)=b, g(3)=a$ is not injective, since $g(1)=g(3)$, even though $1 \neq 3$.

Definition. A function $f: S \rightarrow T$ is said to be onto, or surjective, if every element of T gets mapped onto. More formally, f is surjective if it satisfies: $\forall t \in T, \exists s \in S$ such that $f(s)=t$. A "surjection" is a surjective function.

Example. Suppose that $S=\{1,2,3,4\}$ and $T=\{a, b, c\}$. Then the map $f: S \rightarrow T$ defined by $f(1)=a$, $f(2)=c, f(3)=b, f(4)=a$ is surjective. The function $g: S \rightarrow T$ defined by $g(1)=a, g(2)=b, g(3)=a$, $g(4)=b$ is not surjective, since g doesn't send anything to c.

Definition. A function $f: S \rightarrow T$ is said to be bijective if it is both injective and surjective. A"bijection" is a bijective function.

Example. Let $S=\{1,2,3\}$ and $T=\{a, b, c\}$. Then the function $f: S \rightarrow T$ defined by $f(1)=a, f(2)=b$, and $f(3)=c$ is a bijection. Another example is the function $g: S \rightarrow T$ defined by $g(1)=c, g(2)=b$, $g(3)=a$.

Question. In the above example, how many different bijections are there from S to T ?
Fact. If S and T are finite sets, and $\# S>\# T$, then there are no injective functions from S to T. For instance, there are no injective functions from $S=\{1,2,3\}$ to $T=\{a, b\}$: an injective function would have to send the three different elements of S to three different elements of T. But T only has two elements. There's just not enough space in T for there to be an injective function from S to T !

By contrapositive, if there exists an injection $f: S \rightarrow T$, then $\# S \leq \# T$
Fact. Similarly, if S and T are finite sets, and $\# S<\# T$, then there are no surjective functions from S to T. For instance, if $S=\{1,2\}$ and $T=\{a, b, c\}$, there's no way to map the two elements of S onto all three elements of T. By contrapositive, if there exists a surjection $f: S \rightarrow T$, then $\# S \geq \# T$.

Fact. By combining the above two facts, we see: if S and T are finite sets and there exists a bijection $f: S \rightarrow T$, then $\# S=\# T$. (By definition, f is injective, so $\# S \leq \# T$. Also by definition, f is surjective, so $\# S \geq \# T$. Thus $\# S=\# T$)

