Math 1060 Assignment 1

Due: September 4, 2014

Show all your work!!

Section 4.1

Problem 1 Draw the following angles in standard position. All angles are given in radians. Make sure to draw little arrows indicating the direction of the angle!
a. $\frac{\pi}{3}$
b. -2π
c. $\frac{5 \pi}{2}$
d. 3.14159265

Problem 2 Find two positive angles coterminal to $\frac{\pi}{4} \mathrm{rad}$. State your answers in radians.
Problem 3 Find two negative angles coterminal to $\frac{5 \pi}{7} \mathrm{rad}$. State your answers in radians.
Problem 4 Find the complement and supplement of each angle, if one exists. Note that an angle β is called the complement of α if α and β are complementary angles. Similarly, an angle β is called the supplement of α if α and β are supplementary angles. Each angle is given in radians. State your answer in radians.
a. $\frac{\pi}{4}$
b. $\frac{5 \pi}{6}$
c. 2

Problem 5 Convert the following angles from radians to degrees. Simplify your answers.
a. $\frac{\pi}{4}$
b. $-\frac{5 \pi}{6}$
c. $\frac{7 \pi}{6}$

Problem 6 Convert the following angles from degrees to radians.
a. 405°
b. -60°
c. 215°

Problem 7 Find the length of an arc on a circle of radius $r=3$ in intercepted by a central angle $\theta=\frac{\pi}{3} \mathrm{rad}$.
Problem 8 Find the length of an arc on a circle of radius $r=3$ in intercepted by a central angle $\theta=215^{\circ}$.

Section 4.2

In this section, all angles are in radians. Problem 9 Compute the coordinates of the points on the unit circle that correspond to the following angles:
a. $\frac{\pi}{4}$
b. $\frac{2 \pi}{3}$
c. $\frac{4 \pi}{3}$

Problem 10 Evaluate the six trigonometric functions (if possible) on the following angles:
a. $\frac{\pi}{4}$
b. $\frac{2 \pi}{3}$
c. $\frac{\pi}{2}$
d. π

Problem 11 Evaluate the sine and cosine of the following angles:
a. $\frac{5 \pi}{6}$
b. $\frac{11 \pi}{6}$
c. $\frac{17 \pi}{6}$

Problem 12 Suppose θ is some angle so that $\sin (\theta)=0.3$. Evaluate:
a. $\sin (-\theta)$
b. $\csc (\theta)$

Problem 13 Now suppose that θ is some angle so that $\cos (\theta)=0.3$. Evaluate:
a. $\cos (-\theta)$
b. $\sec (\theta)$

