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Abstract

Let k be an algebraically closed field and A be a finitely generated, centrally finite, non-
negatively graded (not necessarily commutative) k-algebra. In this note we construct a repre-
sentation scheme for graded maximal Cohen-Macaulay A modules. Our main application asserts
that when A is commutative with an isolated singularity, for a fixed multiplicity, there are only
finitely many indecomposable rigid (i.e, with no nontrivial self-extensions) MCM modules up to
shifting and isomorphism. We appeal to a result by Keller, Murfet, and Van den Bergh to prove
a similar result for rings that are completion of graded rings. Finally, we discuss how finiteness
results for rigid MCM modules are related to recent work by Iyama and Wemyss on maximal
modifying modules over compound Du Val singularities.

1 Introduction

Since the pioneering work of Kac [Kac80], schemes parameterizing (framed) finite dimensional mod-
ules over algebras have been an important tool in representation theory [Kra82, Sch92] and noncom-
mutative geometry [CBEG07, CQ95, KR00, LB08]. Let Q = (Q0, Q1) be a quiver with vertex set
Q0 and edge set Q1. Fix a field k. A representation of Q over k is then a collection {Vi : i ∈ Q0}
of k-vector spaces together with linear transformations φa : Vs(a) → Vt(a) for each edge a ∈ Q1

(where s(a) and t(a) are the source and target vertices of a, respectively). The dimension vector
of a representation ({Vi}, {φa}) is the vector d = (dim(Vi)) ∈ NQ0 . While the underlying vector
spaces of a representation of Q are not an isomorphism invariant, its dimension vector is one. Let
us fix a dimension vector d and collection {Vi : i ∈ Q0} of finite-dimensional k-vector spaces where
dim(V•) = d. Then we define the representation space

Rep(Q,V•) =
∏
a∈Q1

Homk(Vs(a), Vt(a)).

The group G =
∏
i∈Q0

GL(Vi) naturally acts on Rep(Q,V•) by simultaneous change of basis. The
G-orbits are in bijective correspondence with the isomorphism classes of representations of Q with
dimension vector d. An analogous construction is available to parameterize finite dimensional rep-
resentations of any associative algebra, up to change of basis.

Assume k is an algebraically closed field and suppose that A is a k-algebra that is module-finite
over its center Z(A) and such that Z(A) is a finitely generated k-algebra. We adopt the following
notion of maximal Cohen-Macaulay module in this setting, motivated by the notion of “centrally
Cohen-Macaulay” in [BHM83, Mac10].

Definition 1.1. We say that a finitely generated, left A module M is maximal Cohen-Macaulay
(MCM) if it is MCM over Z(A).
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Suppose that R ⊂ Z(A) is a polynomial subring over which A is module-finite. Let M be an MCM
A-module. Then M is free over R, so we can think about MCM A-modules as representations
A → Mn(R) that are compatible with the action of R on A. This point of view goes back to the
beginning of the study of MCM modules. If MCM A-modules are analogous to finite dimensional
representations of associative algebras, then what plays the role of the representation scheme?

Assumption 1.2. From now on we assume that A is non-negatively graded and that A0, the
degree-zero component of A is finite dimensional over k. Assume that the center Z(A) of A is a
finitely generated k-algebra. Fix R ⊂ A to be a graded, central, polynomial subring over which A
is module-finite. Such R always exists by (the graded version of) Noether normalization, applied to
Z(A). (We do not assume that R is standard-graded.)

Let M be a graded MCM A-module. Then M is graded-free as an R-module. We note that the
isomorphism class over R of a graded MCM A-module is constant in families. So fix a graded
k-vector space V•. We will construct a scheme RepR(A, V•) of finite type over k parameterizing
graded A-module structures on V•⊗R which extend the free R-module structure. Moreover, GV• =
AutR(V• ⊗ R)0, the group of degree-preserving automorphisms of V• ⊗ R over R is an algebraic
group and it acts on RepR(A, V•) by “change of basis”. The scheme RepR(A, V•) with its GV•
action shares many properties with its counterpart in the world of finite dimensional algebras. As in
the case of modules over a finite dimensional algebra, the GV• -orbits on RepR(A, V•) are in one-one
correspondence with the isomorphism classes of MCM A-modules that are isomorphic to V• ⊗R as
R-modules. Furthermore for any point M : A → EndR(V• ⊗ R) in RepR(A, V•), there is an exact
sequence of k-vector spaces

0→ EndA(M)0 → EndR(V• ⊗R)0 → TM RepR(A, V•)→ Ext1
A(M,M)0 → 0,

where and TM RepR(A, V•) is the Zariski tanget space to the scheme RepR(A, V•) at the point M
(see Theorem 2.3).

One of the first applications of the representation scheme in the theory of finite dimensional algebras
is to show that for each dimension vector there are only finitely many isomorphism classes of rigid
modules, that is modules with no non-split self extensions (see [Hap95]). This has been applied in
commutative algebra to show that for each multiplicity, there are only finitely many isomorphism
classes of semi-dualizing modules ([CSW08]). In this direction we prove:

Main Theorem. Assume we are in the situation of 1.2. Furthermore, assume that A is commu-
tative, with an isolated singularity. For each graded free R-module V there are only finitely many
isomorphism classes of rigid, graded MCM A-modules of type V .

Together with a finiteness result about indecomposable modules, this implies

Corollary A. Up to shifting, there are only finitely many isomorphism classes of indecomposable,
rigid, graded MCM A-modules of each rank.

Here, the rank is taken over some Noether normalization of A. Obviously, one can replace that by
the rank over A, if it is a domain, or more generally, by the Hilbert-Samuel multiplicity with respect
to the maximal ideal.

Next, we appeal to a result of Keller, Murfet, and Van den Bergh [KMVdB11] to obtain a finiteness
theorem for gradable rings.

Corollary B. Let A be a complete, local k-algebra with an isolated singularity which is the com-
pletion of some non-negatively graded ring. Then A admits only finitely many indecomposable, rigid
MCM A-modules of each rank.
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In the final section, we consider the conjecture that a commutative local ring with an isolated singu-
larity admits only finitely many isomorphism classes of rigid MCM modules of a given multiplicity.
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2 Main constructions

Fix an algebraically closed field k. Let A be a non-negatively graded k-algebra whose center is
finitely generated over k and which is module-finite over its center. Note that Z(A) automatically
inherits the grading from A. Assume furthermore that A0 is finite-dimensional over k and that
Z(A) is a finitely generated k-algebra. Throughout this section, unadorned tensor products are
understood to be over k.

We recall from the introduction the class of modules that we will study. A graded maximal
Cohen-Macaulay (MCM) module is a finitely generated, graded A module whose restriction
to Z(A) is a graded MCM module. There are several ways to characterize MCM modules over a
commutative ring. However in this paper, we will only need the following. Suppose that R ⊂ Z(A) is
a graded polynomial subring of Z(A) (not necessarily standard-graded) such that Z(A) is a finitely
generated module over R. Then a Z(A)-module is MCM if and only if it is free when viewed as an
R-module.

Let T be a commutative k-algebra. Then we form the graded ring AT := T ⊗k A. Observe
that Z(AT ) = T ⊗k Z(A) and moreover, AT is a finitely generated module over Z(AT ). Indeed, if
a1, . . . , ar are generators for A over Z(A), then their images (also denoted) a1, . . . , ar in AT generated
AT over Z(AT ). We also note that we get a subring RT := T ⊗k R ⊂ Z(AT ) over which Z(AT )
(and AT ) are module-finite. Since R is a graded polynomial ring over k, RT is a graded polynomial
ring over T .

Fix a finite-dimensional graded k-vector space V•. We consider Endk(V•) as a graded ring where a
linear transformation ψ : V• → V• is homogeneous of degree m if and only if ψ(Vr) ⊂ Vr+m for all r.

Definition 2.1. Let T be a commutative k-algebra. A T -flat family of V•-framed graded
MCM A modules is a graded, AT -module M together with an isomorphism V• ⊗ RT → M of
graded RT -modules.

We now define a functor RepR(A, V•) from the category of commutative k-algebras to sets:

RepR(A, V•)(T ) = {T -flat families of V•-framed A-modules}.

Consider the algebraic group GV• = AutR(V• ⊗R)0 of degree-preserving R-module automorphisms
of the free, graded R-module (V• ⊗R). This group fits into an exact sequence

0→ ⊕i>j Homk(Vi, Vj ⊗Ri−j)→ GV• →
∏
i∈Z

GL(Vi)→ 1.

Proposition 2.2. The functor RepR(A, V•) is represented by an affine variety of finite type equipped
with an action of the algebraic group GV• .

Proof. Fix a graded-free presentation of A as an R module⊕s
i=1R(bi)

τ //⊕r
i=1R(ai)

σ // A // 0.
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Consider the affine space

X = HomR(⊕ri=1R(ai),Endk(V•)⊗R)0.

Note that GV• naturally acts on X. There is a morphism of functors

RepR(A, V•)→ X

where, by abuse of notation, we denote by X both the functor represented by X and X itself. Let
T be a test ring. Then X(T ) = Hom(Spec(T ), X) is precisely the set of R-module maps

⊕ri=1R(ai)→ End(V•)⊗k R⊗ T.

Suppose we are given an R-algebra morphism α : A → Endk(V•) ⊗ R ⊗ T . By composing α with
the presentation map we obtain an R-module morphism ⊕ri=1R(ai)→ End•(V•)⊗ R ⊗ T and thus
an element of X(T ). It is clear that this construction is natural.

Now, we claim that RepR(A, V•) → X is a closed embedding. Indeed, suppose given an R-module
map

φ :

r⊕
i=1

R(ai)→ End(V•)⊗R⊗ T

and a morphism f : T → T ′. Notice that RepR(A, V•)(T
′) → X(T ′) is injective. So f∗(φ) is in its

image if and only if the composite map

f∗(φ) :

r⊕
i=1

R(ai)→ End(V•)⊗R⊗ T ′

factors through an R-algebra map

A→ End(V•)⊗R⊗ T ′.

This amounts to two vanishing conditions. First of all the composite map

s⊕
i=1

R(bi)→ End(V•)⊗R⊗ T ′

is zero. Let βi be a generator of R(bi). Then f∗(φ) factors through A as an R-module map if and only
if φ(τ(βi)) ∈ End(V•)⊗R⊗T maps to zero in End(V•)⊗R⊗T ′. Now, φ(τ(βi)) ∈ (End(V•)⊗R)bi⊗T ,
which is a free summand of End(V•)⊗R⊗ T . Hence, there is a well defined subspace Wi ⊂ T such
that f∗(φ)(τ(βi)) = 0 if and only if f(Wi) = 0.

So assume that f annihilates the ideal (Wi : i = 1, . . . , s) ⊂ T . Then f∗(φ) factors through an
R-module map

f∗(φ) : A→ End(V•)⊗R⊗ T ′.

For this to be an R-algebra map, it must satisfy two conditions. First, f∗(φ)(1A) = id⊗1⊗ 1. This
means that φ(1A)− id⊗1⊗ 1 must map to zero under f . Again there is a well defined subspace U
of T such that f∗(φ)(1A) = id⊗1⊗ 1 if and only if f(U) = 0. Second, we must have

f∗(φ)(ab) = f∗(φ)(a)f∗(φ)(b). (1)

Let αi be a generator of R(ai) and suppose for each i, j we have

σ(αi)σ(αj) = σ(
∑

clijαl)
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Then (1) holds if and only if

φ(σ(αi))φ(σ(αj))− φ(σ(
∑

clijαl))

maps to zero under f . Once again, each equation determines a subspace Uij such that the element
above vanishes in End(V•)⊗R⊗ T ′ if and only if f(Uij) = 0.

Putting all of these considerations together we find that f∗(φ) ∈ RepR(A, V•)(T
′) if and only if f

annihilates the ideal (Wi, U, Uij) ⊂ T . Hence RepR(A, V•) is a closed subfunctor of X and thus
representable. We notice that since GV• acts on X via algebra automorphisms of End(V•) ⊗ R,
RepR(A, V•) is preserved by the action of GV• . �

The following Proposition adapts [Voi77] (see [Gab74]) to our situation.

Proposition 2.3. Let p ∈ RepR(A, V•) be a k-point. Then there is an exact sequence

0→ EndA(Mp)0 → EndR(V• ⊗R)0 → Tp RepR(A, V•)→ Ext1
A(Mp,Mp)0 → 0

Proof. We begin by observing that EndR(V• ⊗ R)0 = Lie(GV•) and take for the middle map the
map associated to the action of GV• on RepR(A, V•). Explicitly, given an endomorphism φ ∈
EndR(V• ⊗ R)0, we construct a framed A[ε]-module as follows. Let α : A → End(V•) ⊗ R be the
action map. Then the action of A on V• ⊗R[ε] corresponding to φ is

a(v + εw) = av + ε(φ(av)− aφ(v) + aw). (2)

Notice that if φ ∈ EndA(Mp) then φ(av) − aφ(v) = 0. Hence the action of A on V• ⊗ R[ε] is split
compatible with the framing. Therefore the image of φ in Tp RepR(A, V•) is zero.

Turning to the second map, recall that the point p represents an A-module structure on V•⊗R. We
denote this A-module by M . By the modular description of RepR(A, V•) given in Proposition 2.2,
we identify the space Tp RepR(A, V•) with the collection of V•-framed MCM A[ε]-modules (where
ε2 = 0) Mε such that Mε/εMε

∼= M as framed A-modules. Now, any such module fits into an exact
sequence

0→ εMε →Mε →Mε/εMε → 0.

So we obtain a map Tp RepR(A, V•)→ Ext1
A(Mp,Mp)0.

It remains to show that these maps give rise to an exact sequence. First, suppose that

0→Mp → N →Mp → 0

represents a given class η ∈ Ext1
A(Mp,Mp)0. Denote by ε the endomorphism obtained by composing

N →Mp → N

the second, then first maps in the exact sequence representing η. Since ε is an A-module map, this
equips N with the structure of an A[ε]-module. Since Mp is free as a graded R-module, we can
find an R-module splitting s : Mp → N . This induces a map V• ⊗ R → N and using the action
of ε, we obtain a framing V• ⊗ R[ε] → N . By construction this reduces to the original framing
modulo ε. Hence this framed A[ε]-module represents an element of Tp RepR(A, V•) whose image in
Ext1

A(Mp,Mp)0 is η.

Next, suppose that A acts on V• ⊗R[ε] in such a way that

0→ εV• ⊗R→ V• ⊗R[ε]→ V• ⊗R→ 0
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is split as an exact sequence of A-modules. Let s = id +εφ be a splitting, where we identify
V• ⊗R[ε] = V• ⊗R⊕ εV• ⊗R. Since s is an A-module map we have

av + εφ(av) = s(av) = a ∗ s(v) = a ∗ v + εaφ(v)

where we write ∗ for the action of A on V• ⊗R[ε]. Hence

a ∗ v = av + ε(φ(av)− aφ(v)).

Hence the element of Tp RepR(A, V•) corresponding to the action under consideration is in the image
of EndR(V• ⊗R)0 = Lie(GV•).

Finally, suppose that φ ∈ EndR(V• ⊗ R)0 maps to zero in Tp RepR(A, V•). Then the A-module
structure on V• ⊗R[ε] satisfies a(v + εw) = av + εaw. Comparing this to (2), we find that φ(av) =
aφ(v) so that φ ∈ EndA(V• ⊗R)0. �

Theorem 2.4. For each polynomial H(t) ∈ Q[t] there are finitely many isomorphism classes of
rigid, graded, MCM A-modules with Hilbert polynomial H(t).

Proof. Two graded, MCM A-modules have the same Hilbert polynomial if and only if they are
isomorphic over R. Hence, the set of MCM A-modules with fixed Hilbert polynomial is parameterized
by RepR(A, V•) for a particular V•. Since RepR(A, V•) has finite type over k, it has finitely many
irreducible components. Suppose that p ∈ RepR(A, V•) corresponds to a rigid A-module. Then
the infinitesimal action map Lie(GV•) → Tp RepR(A, V•) is surjective. Hence, the orbit GV• of p
is dense in its component. We conclude that there can be only finitely many isomorphism classes
of rigid MCM A-modules with a given Hilbert polynomial, at most the number of components of
RepR(A, V•). �

3 A finiteness theorem

Let A be a graded k-algebra as in Section 2, with R ⊂ Z(A) a graded polynomial subring over which
A is module-finite. Furthermore, assume that A is connected, so that the unit map k → A0 is an
isomorphism. Once again, unadorned tensor products are over the base field k.

Put R+ = ⊕m>0Rm. Given a finitely generated, graded R-module M we define the quantities

gmin(M) = min{m : (M/R+M)m 6= 0},
gmax(M) = max{m : (M/R+M)m 6= 0},

w(M) = gmax(M)− gmin(M).

We extend these definitions to graded A-modules by viewing them as graded R-modules. A graded
MCM A-module is called simple if it does not admit any proper, nonzero MCM quotient modules.
Given an MCM A-module, graded or not we define r(M) = rankR(M), the rank of M as an R-
module. Since A is module-finite over R this quantity is finite. Finally, for a graded k vector space V•
we say that a graded, MCM A-module M has type V• if M/R+M ∼= V• as graded vector spaces. The
following finiteness result appears in Karroum’s thesis. While the result is stated for commutative
rings, no substantial modification of the proof is needed to extend it to the non-commutative setting.

Theorem ([Kar09]). Suppose that A is commutative. For each r ≥ 0, there exists a natural number
δr such that if M is a simple, graded MCM A-module with r(M) = r then w(M) < δr.

The main result of this section is to extend the previous theorem to indecomposable modules. It
does require that A is commutative and furthermore that it has an isolated singularity. We say that
A has an isolated singularity if for every prime ideal p 6= A+, the localization Ap is regular.
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Theorem 3.1. Assume that A is commutative, with an isolated singularity. For each r > 0 there
exists αr > 0 such that if M is an indecomposable, graded MCM A-module then w(M) < αr(M).

For the convenience of the reader and to introduce the ideas we will start by outlining a proof of
Karroum’s Theorem. Suppose that M is a simple graded MCM A-module. Fix a set of homogeneous
algebra generators a1, . . . , aγ ∈ A for A over R. Define α = gmax(A) and note that we may assume
α ≥ max{deg(ai) : i = 1, . . . , γ}. Consider the finite dimensional, graded k-vector space M/R+M .
We note that dimk(M/R+M) = r(M). The following Lemma gives a way to produce MCM A-
submodules of MCM A-modules.

Lemma 3.2. Suppose that there is some i0 such that (M/R+M)i0+j = 0 for j = 1, . . . , α. Let
M ′ =

∑
i≤i0 RMi be the R-submodule generated by the part of M in degrees up to i0. Then M ′ is

preserved by the action of A and both M ′ and M/M ′ are MCM.

Proof. We observe that the inclusion map M ′ → M induces an isomorphism (M ′)i → Mi for
i ≤ i0 + α. Let m ∈ M ′ be a homogeneous element. Note that we we can express m in terms of
elements of bounded degree

m =
∑
i≤i0

rimi, ri ∈ R, mi ∈M ′i ,

since M ′ is generated in degress i0 and less as an R-module. Now to show that M ′ is preserved by
A it suffices to show that ajM

′ ⊂M ′ for j = 1, . . . , γ. Now we have

ajm =
∑
i≤i0

riajmi

and deg(ajmi) ≤ i0 + α. Hence ajmi ∈ M ′. The claims that M ′ and M/M ′ are MCM follow
from the freeness of M ′ and M/M ′ over R. Choosing an isomorphism M ∼= ⊕i(M/R+)i ⊗R of
R-modules, we find that M ′ = ⊕i≤i0(M/R+M)i ⊗R and M/M ′ ∼= ⊕i>i0(M/R+M)i ⊗R. �

To prove Karroum’s theorem we may take δr = rα + 1. Indeed, if M is an MCM A-module
with w(M) > r(M)α + 1 then the pigeonhole principle implies that there must exist i0 such that
(M/R+M)i0+j = 0 for j = 1, . . . , α. Then Lemma 3.2 implies the existence of an MCM submodule
of M with MCM quotient. So M is not simple.

Assume now that A is commutative, with an isolated singularity. Then for any two MCM A-modules
M,N , the module Ext1

A(M,N) is annihilated by a power of A+. In particular, Ext1
A(M,N) is finite

dimensional over k. The main workhorse for this section is the following Lemma, which controls the
largest nonzero graded component of Ext1

A(M,N).

Lemma 3.3. Given natural numbers r, s > 0 there exists an integer βr,s ≥ 0 such that for all graded,
MCM A-modules M and N with r(M) ≤ r, r(N) ≤ s, and gmin(M) > gmax(N) + βr,s

Ext1
A(M,N)0 = 0.

Proof. We proceed by induction on the pair (r, s) (with the component-wise partial order). During
the induction, we will construct the β’s so that βr′,s′ ≤ βr,s if (r′, s′) ≤ (r, s).

Let M,N be graded MCM A-modules with r = rk(M) and s = rk(N). Consider an extension

0→ N → E →M → 0.
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Suppose that M admits a proper, simple, graded MCM quotient M � S with kernel M ′ ⊂M . Then
gmin(M ′), gmin(S) ≥ gmin(M). So if gmin(M) − gmax(N) ≥ βr(M ′),s, βr(S),s then Ext1

A(M ′, N)0 =

Ext1
A(S,N)0 = 0. From the exact sequence

Ext1
A(S,N)0 → Ext1

A(M,N)0 → Ext1
A(M ′, N)0

we see that Ext1
A(M,N)0 = 0 as well.

Note that if M is a graded, MCM A-module then so is M∨ := HomR(M,R). Moreover, there is
a canonical isomorphism Ext1(M,N) ∼= Ext1(N∨,M∨). Moreover, gmax(M∨) = −gmin(M) and
gmin(N∨) = −gmax(N) so

gmin(M)− gmax(N) = gmin(N∨)− gmax(M∨).

So if N is not simple, we can show that Ext1
A(N∨,M∨)0 = 0 by the argument in the previous

paragraph and thus Ext1
A(M,N)0 = 0, provided gmin(M)− gmax(N) > max{βr,s′ : s′ ≤ s}.

It remains to consider the case where M and N are simple. Let V• = (M/R+M)(−gmin(M))
and W• = (N/R+N)(−gmin(N)). We shift these graded vector spaces to normalize them so that
the lowest nonzero component is in degree zero. By Karroum’s Theorem, w(M), w(N) ≤ w :=
max{δr, δs}. This means that there are only finitely many possibilities for the pair (V•,W•). In light
of this we claim that it suffices to show that for any pair V•,W• of graded vector spaces, there is a
bound mV•,W• only depending on V• and W• such that Ext1

A(M,N)j = 0 for all M of type V•, N
of type W•, and j with |j| > mV•,W• . Indeed, if |j| > mV•,W• then

Ext1
A(M(−gmin(M)), N(−gmin(N)))j = Ext1

A(M,N)j+gmin(M)−gmin(N) = 0.

Since gmin(M)− gmin(N) ≥ gmin(M)− gmax(N), it follows that if gmin(M) > gmax(N) + mV•,W•

then Ext1
A(M,N)0 = 0. After making these reductions we see that

βr,s = max{βr′,s′ ,mV•,W• : (r′, s′) < (r, s),dim(V•) = r, dim(W•) = s, w(V•), w(W•) ≤ w}

has the desired property.

Form X = RepA(V•)×RepA(W•), which is an affine scheme of finite type. We have two tautological
flat families of graded, MCM A-modules M and N via the projections. We view these as graded
sheaves on X, equipped with a homogenous action of A⊗OX .

Let F• →M be a resolution of M where Fi = ⊕bij=1OX ⊗A(aj). Then for each p ∈ X, we obtain
a graded-free resolution

F•|p →M|p
of the graded A-module M|p.
By [Yos90], Proposition 6.17 (adapted to the graded setting), there exists a graded quotient ring
R � R with the following properties. Put Ā = A ⊗R R. Then dimk(R) < ∞ and for any graded,
MCM A-modules M,N the map

Ext1
A(M,N)→ Ext1

Ā(M ⊗R R,N ⊗R R)

is injective.

Now for each p ∈ X, we note that F•|p⊗R R→M|p⊗R R is a graded-free resolution ofM|p⊗R R.
Putting it all together, Ext1

A(M|p,N|p) embeds in Ext1
Ā(M|p⊗RR,N|p⊗RR), which is a subquotient

of

HomĀ(F1|p ⊗R R,Np ⊗R R) = HomĀ(⊕b1j=1Ā(a1,j),N|p ⊗R R) =

⊕b1j=1 N|p ⊗R R(−a1,j) = ⊕b1j=1W• ⊗R(−a1,j).
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The right hand side is a finite dimensional graded vector space that only depends on V• and W•.
This means that there is an m only depending on V• and W• such that if |j| > m then

Ext1
A(M|p,N|p)j = 0.

The Lemma then follows as explained above. �

Proof of Theorem 3.1. As in the proof of Karroum’s Theorem, fix a set of homogeneous generators
a1, . . . , aγ for A over k and let α = max{deg(ai) : 1 ≤ i ≤ γ}. We will show that αr = r ·
max{α, β1, . . . , βr}+ 1, where βr = βr,r satisfies the statement of Theorem 3.1.

Consider a graded, MCM A-module M and assume that w(M) > αr. Then there exists gmin(M) ≤
i0 < gmax(M) such that (M/R+M)i0+j = 0 for all 0 < j < max{α, β1, . . . , βr}. By Lemma 3.2 the
R-submodule M ′ =

∑
i≤i0 R ·Mi is in fact an MCM A-submodule and M/M ′ is also MCM. We will

now show that the choice of αr guarantees that the extension

0→M ′ →M →M/M ′ → 0

splits. Let s = max{r(M ′), r(M/M ′)}. Then by construction gmax(M ′) < gmin(M/M ′)+βs. Hence
Ext1

A(M/M ′,M ′) = 0 by Lemma 3.3 and the above extension splits. �

Proof of Corollary B. Let A be a non-negatively graded k-algebra and let Â be its completion with
respect to the irrelevant ideal. By [KMVdB11], every rigid MCM Â module is the completion of a

graded MCM A-module. Since Â has an isolated singularity, so does A. By Theorem 3.1, there are
finitely many isomorphism classes of indecomposable rigid, graded, MCM A modules of each rank,
up to shifting. Hence there are finitely many isomorphism classes of indecomposable, rigid MCM
Â-modules of each rank. It is then immediate that there are only finitely many isomorphism classes
of rigid, MCM Â-modules of each rank. �

4 Questions and conjectures

Throughout this section R is a Noetherian local ring. Our aim is to discuss the natural local analogue
of our main Theorem 1 on rigid modules. We state it as a:

Conjecture 1. Let R be a complete Noetherian local ring. Fix an integer N . Up to isomorphism,
there are only finitely many rigid MCM R-modules of (Hilbert-Samuel) multiplicity at most N .

When R is a domain, the conjecture can be formulated in terms of ranks.

Conjecture 2. Let R be a complete Noetherian local domain. Fix an integer N . Up to isomorphism,
there are only finitely many rigid MCM R-modules of rank at most N .

There are several supporting pieces of evidence for these conjectures. It is true when dim(R) = 0.
Our Corollary B establishes the conjectures for rings R with an isolated singularity which are the
completion of a non-negatively graded algebra. However, the general statements appear to be
difficult. For instance, we do not know if they hold even for one-dimensional Gorenstein or complete
intersection domains. In fact, it may be true that over a one-dimensional complete intersection
domain, a rigid MCM module is free, but it is known only when R is a hypersurface (see [Dao13],
especially Section 9).

For the rest of this section we will point out a few links between the above conjectures and some
recent works. Before moving on, we recall a relevant definition from [IW14]. A reflexive module
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M is called modifying if EndR(M) is MCM. These modules have been studied intensely recently
due to their connections to non-commutative (crepant) desingularizations. The property of being
modifying is closely related to rigidity.

Proposition 4.1. Suppose that R is normal and satisfies Serre’s condition (R2), that is that Rp is
regular for primes p of height at most two. Let M be a reflexive R-module. If M is modifying, then
it is rigid. The converse is true when dim(R) ≤ 3.

Proof. This is well-known but we could not find a convenient reference. Let M be a modifying
module. As M is reflexive, if dim(R) ≤ 2 then M is automatically free, hence rigid. Suppose
dim(R) ≥ 3. By induction on dimension and localizing, Ext1

R(M,M) is supported only at the
maximal ideal, so is either 0 or has depth 0. Now take a projective cover of M : 0 → ΩM → F →
M → 0 and apply HomR(−,M) yields:

0→ HomR(M,M)→ HomR(F,M)→ HomR(ΩM,M)→ Ext1
R(M,M)→ 0.

Counting depths along this new exact sequence one sees that Ext1
R(M,M) = 0. The same sequence

also implies the converse when dim(R) ≤ 3. �

Conjecture 3. Let R be complete local Cohen-Macaulay ring satisfying Serre’s condition (R2). The
the set of MCM elements in the class group of R is finite.

As far as we know, this is open even when dim(R) = 3 and R is a complete intersection singularity.
When R is a hypersurface and contains a field, it is known by [DK15, Corollary 4.8] (see also Section
4 of that paper for some discussion of this conjecture).

The point is, under the assumptions on R, the MCM elements in the class group are rigid. In fact,
by basic property of the class group, such modules are modifying.

Proposition 4.2. Let (R,m) be a three dimensional complete local domain. Suppose for some
element t ∈ m−m2, R/tR is a quotient singularity. If Conjecture 2 holds, then R has only finitely
many indecomposable rigid MCM modules, up to isomorphism.

Proof. By the proof of [DH13, Prop 4.3], we know that all indecomposable rigid modules have rank
bounded above by the maximal rank of the MCM modules over R/tR (this number exists since
R/tR is a two dimensional quotient singularity, hence has only finitely many MCM modules up
to isomorphism). Conjecture 2 then implies that there are only finitely many such modules up to
isomorphism. �

The above Proposition is related to some recent results in [IW14, Wem15]. Recall that if R/tR is a
Kleinian (Du Val, or simple) singularity for a general choice of t, then R is called a compound Du
Val (cDV) singularity. Also, recall from [IW14] that a reflexive module is maximal modifying
if add(M) = {X |EndR(M ⊕ X) ∈ MCM(R)}. It has recently been shown that there are only
finitely many modules that are indecomposable summands of maximal modifying modules which is
a generator (has R as a summand). The proof rests upon some sophisticated birational geometry
and tilting theory. For example, it was shown ([Wem15, Theorem 4.9]) that the basic maximal
modifying generators corresponds bijectively to minimal models over Spec(R).

Since maximal modifying modules are automatically MCM and modifying, Propositions 4.1 and 4.2
say that Conjecture 2 would imply such finiteness results when R has an isolated singularity such
that for some choice of t, R/tR is a quotient singularity.
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