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Preface

We begin with the origin of the Dirac equation and give a brief introduction
of the Dirac operators due to Parthasarathy, Vogan and Kostant. Then we
explain a conjecture of Vogan on Dirac cohomology, which we proved in [HP1],
its applications and the organization of the book.

0.1 The Dirac equation. The Dirac equation has an interesting connection
to E = mc?, the Einstein’s equation from his special theory of relativity. This
equation relates the energy E of a particle at rest to its mass m through a
conversion factor, the square of the speed c of light. However, this way of
writing the equation obscures the underlying four-dimensional geometry. The
relation for a particle in motion is a hyperbolic equation:

E? —p-p = (mc?)?. (0.1)

Here the energy F is the first component of a vector (E, cp) = (F, ¢p1, cpe, cp3)
and p is the vector that describes the momentum of the particle. This more
general equation exhibits the mechanism of the conversion of mass into relative
motion.

For describing relativistic spin % particles Dirac was to rewrite the quadratic
Einstein relation (0.1) as a linear relation. This would seem impossible. But
Dirac came up with a new idea by writing the relation as follows:

3
WE + ey vp =mel, (0.2)

j=1

where v, (k=10,1,2,3) are 4 x 4 matrices and [ is the 4 x 4 identity matrix.
The four matrices vp,v1,72 and 3 are anticommutative: vy, = —vyry; for
j # k. Furthermore, they satisfy 7¢ = I and 'yf- = —1 for j # 0. In quantum
mechanics energy and momentum are expressed by differential operators:

d
E =ih—, p= —ihv
ihg,, p=—ihv,
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where % is the Planck constant. Substituting the above differentials for E' and
p into (0.2), one obtains the Dirac equation:

0 > 0
ihryo N lhc; . Vi Oz, =mc°1, (0.3)

This matrix valued first order differential equation has had a remarkable suc-
cess in describing many elementary particles that make up matter. The various
analogs of the corresponding differential operator are called Dirac operators.
The impact of the Dirac operators on the development of mathematics is also
significant. The extension of the definition of Dirac operator to a differentiable
manifold and a proof of the corresponding index theorem by Atiyah and Singer
is one of the most influential theories of mathematics in the twentieth century.

0.2 Group representations and discrete series. Representations of fi-
nite groups were studied by Dedekind, Frobenius, Hurwitz and Schur at the
beginning of the 20th century. In the 1920s, the focus of investigations was
representation theory of compact Lie groups and its relations to invariant
theory. Cartan and Weyl obtained the well-known classification of equiva-
lence classes of irreducible unitary representations of connected compact Lie
groups in terms of highest weights. In the 1930s, Dirac and Wigner initiated
the investigation of infinite-dimensional representations of noncompact Lie
groups.

Harish-Chandra was a Ph. D. student of Dirac at the University of Cam-
bridge from 1945 to 1947. After receiving Ph. D. Harish-Chandra began a
systematical investigation of infinite-dimensional representations of semisim-
ple Lie groups and laid down the foundation for further development. Let G
denote a semisimple Lie group with finite center, the discrete series represen-
tations are the irreducible representations contained in the decomposition of
the regular representations on L?(G). In 1965 and 1966, Harish-Chandra pub-
lished two papers which gave a complete classification of discrete series repre-
sentations. Later he used this classification to prove the Plancherel formula.
This classification of discrete series is also crucial to Langlands classification
of admissible representations. However, Harish-Chandra did not give explicit
construction of discrete series. His work was parallel to that of Cartan-Weyl
for irreducible unitary representations of compact Lie groups.

0.3 Dirac cohomology and Vogan’s conjecture. The Dirac operator was
used for construction of the discrete series representations by Parthasarathy
and Atiyah-Schmid. Denote by gg and €y the Lie algebras of G and K, where
K is a maximal compact subgroup of G. We drop the subscript for their
complexifications. Let g = £ @ p be the complexified Cartan decomposition.
The Killing form on g, which is non-degenerate on p, defines the Clifford
algebra C(p) as an associative algebra with unit. Given an orthonormal basis
Z; of p, Vogan defined an algebraic version of the Dirac operator to be

D=) Zi©Z € Ug)®C(p).
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It is easy to see that D is independent of the choice of basis Z; and K-invariant
(for the adjoint action of K on both factors). Then it can be shown that

D?*=—-0Qy@1+ 2, +C,

where C is a constant and €4 denotes a diagonal embedding of ¢ into U(g) ®
C(p).

If S is a space of spinors (a simple C'(p)-module), then D acts on X @ S.
The Dirac cohomology is defined to be

Hp(X)= Ker D/Ker DN Im D.

The following statement was conjectured by Vogan and proved in [HP1]. For
any z € Z(g) there is a unique ((z) € Z(fa), and there are K-invariant
elements a,b € U(g) ® C(p), such that

z®1=((2)+ Da+bD.

Moreover, ¢: Z(g) — Z(ta) is an algebra homomorphism having a simple
explicit description in terms of Harish-Chandra isomorphisms.

This allows us to identify the infinitesimal character of an irreducible
(g, K)-module that has nonzero Dirac cohomology. Kostant extends this re-
sult to his cubic Dirac operator defined in a more general setting of a pair of
quadratic Lie algebras.

0.4 Applications and organization of the book. Determination of infin-
itesimal character by Dirac cohomology enables us to simplify proofs of a few
classical theorems and even sharpen some. After some preliminaries in Chap-
ters 1 and 2, we explain our proof of the Vogan’s conjecture in Chapter 3. In
Chapter 4 we obtain a simpler proof of a generalized Weyl Character formula
due to Gross, Kostant, Ramond and Steinberg as well as a generalized Bott-
Borel-Weil theorem. Chapters 5 and 6 provide the necessary background of
cohomological parabolic induction. In Chapter 7 we give a simpler proof of the
construction and classification of the discrete series representations. In Chap-
ter 8 we sharpen the Langlands formula on automorphic forms and obtain the
relation of Dirac cohomology to (g, K)-cohomology. Chapter 9 is on the rela-
tion of Dirac cohomology to Lie algebra cohomology. In chapter 10 we prove
an analogue of the Vogan’s conjecture for basic classical Lie superalgebras.

Hong Kong, Jing-Song Huang
June, 2005 Pavle Pandzi¢
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1

Lie groups, Lie algebras and representations

In this preliminary chapter we will outline an introduction to basic struc-
ture and representation theory of Lie groups and algebras. For those who are
not already acquainted with this material, the hope is that the little we will
say, perhaps with a little supplementing from the quoted literature, could
be enough to proceed without plunging into a long and serious study of the
many things involved in this theory. For those who are already familiar with
the matter, this chapter can either be skipped, or can serve as a quick re-
minder of some of the main points. To keep it as simple as possible, we will
mostly explain things in the case of matrix groups, which in any case contains
the main examples.

1.1 Lie groups and algebras

Definition 1.1.1. A Lie group G is a group which is also a smooth manifold,
in such a way that the group operations are smooth. In more words, the
multiplication map from G x G into G and the inverse map from G into G
are required to be smooth.

Morphisms between two Lie groups G and H are smooth maps which are
also group homomorphisms. A Lie subgroup of G is a Lie group H together
with a one-to-one immersion ¢ : H — G (an immersion is a smooth map whose
differential is one-to-one at every point). An especially nice case is when the
image of ¢ is closed - then H is called a closed subgroup . Let us point out that
it will not create confusion to say just “closed subgroup” instead of “closed
Lie subgroup” in view of the Theorem 1.1.3 below.

Examples 1.1.2. Here are the main examples of Lie groups. Consider the
group GL(n,R) of invertible n x n real matrices. The space M, (R) of all
n x n real matrices can be identified with R™" in the obvious way, by putting
the matrix elements into one vector, row by row. So we can consider the
standard Euclidean topology on M, (R). Then GL(n,R) is an open set in
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M, (R), because it is defined by an open condition det g # 0. In particular,
it is a differentiable manifold. Moreover, it is clear that both multplication
and inverting are smooth operations - in fact, their components are rational
functions in the matrix entries. Thus GL(n, R) is a Lie group. In a very similar
way one sees that GL(n,C) is a Lie group, as an open subset of cv’ =R,

Further examples are most easily obtained via the following fundamental
theorem:

Theorem 1.1.3. (Cartan). Fuvery closed subgroup of a Lie group is a Lie
subgroup in a unique way.

For a proof of this theorem see [War] or [?]. All of the groups we define
below are obviously closed subgroups of GL(n,C); therefore they are Lie sub-
groups, and in particular Lie groups. In the following F will stand for either
R or C.

Examples 1.1.4. The group SL(n,F) of n xn matrices over F of determinant
1 is a closed subgroup of GL(n,F) and therefore a Lie group. Further examples
are obtained using bilinear forms.

Let (z,y) = > x;y; denote the standard bilinear form on F™. Then all
bilinear forms B on F™ are in one to one correspondence with matrices H €
M, (F): the relationship is

B(z,y) = (Hz,y), z,y € F".

The group G = GL(n,F) acts on the space of all bilinear forms on F*: g € G
sends B to the form

BY(x,y) = B(gz, gy),z,y € F").

(Note that this is a right action, not a left one, but it is the customary one.)

Since B(gz,gy) = (Hgz,gy) = (¢"Hgz,y), where g” denotes the trans-
pose of the matrix g, the matrix corresponding to B9 is ¢” Hg. Thus g preserves
the form B if and only if g"Hg = H.

On C", we can also consider Hermitian forms B; using the standard Her-
mitian form (,), these forms correspond to matrices H in exactly the same
way as above. The only difference is that the action of g € GL(n,C) is now
given by H — ¢g*Hg, where g* denotes the conjugate transpose of g.

In particular, if B is a nondegenerate symmetric bilinear form on C",
then in a suitable basis its matrix is the identity matrix I. Thus g € GL(n,C)
preserves B if and only if " g = I and the Lie group of such matrices is denoted
by O(n,C) . Over R, if B has signature (p, ¢), then the corresponding diagonal
matrix H) , has p one’s and ¢ minus one’s on the diagonal. The resulting Lie
group consists of matrices satistying ¢"Hp 49 = H, 4 and is denoted by O(p, q)
. In particular, O(n) = O(n,0) is the group of (real) orthogonal matrices.
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Similarly, if we consider a nondegenerate hermitian form of signature (p, q)
on C", we arrive at the Lie group U(p,q) . In particular, U(n) = U(n,0)
denotes the group of unitary matrices.

If besides preserving the form we also impose the condition det g =1, we
get the Lie groups SO(n,C) , SO(p,q) , SO(n) , SU(p,q) and SU(n) .

By considering symplectic (i.e., bilinear, nondegenerate, skew symmetric)
forms instead of symmetric ones, we arrive at symplectic groups Sp(2n,C)
and Sp(2n,R) . These can only be defined on even dimensional spaces, and
their elements are automatically of determinant 1.

Other important examples are the groups B(n,F) of upper triangular ma-
trices and their various subgroups, in particular the groups N(n,F) of unipo-
tent matrices, i.e., upper triangular matrices with 1’s on the diagonal. There
are also abelian groups like C™, R™ or the torus T"™. In the context of matrix
groups, these show up as diagonal matrices.

1.1.5. The Lie algebra of a Lie group. Let G be a Lie group and let us
denote the tangent space to G at the identity by g. Then g is not merely a
vector space, for we can define an operation [,] on g as follows. First, any
g € G defines an inner automorphism of G called Int (g):

Int (g)h = ghg™!, he€GqG.

Taking the differential of Int (g) at h = e, the identity of G, we obtain a
vector space automorphism of g which we denote by Ad (g). In this way we
get a Lie group morphism Ad : G — GL(g). Differentiating Ad at g = e, we
obtain a linear map from g into End (g) which we denote by ad . Namely, as
GL(g) is open in End (g), the tangent space to GL(g) at the identity is all of
End (g). Now [,] is defined by

[X,Y]=ad (X)Y, X,Yeq.

The operation [,] is called the commutator or bracket. With this operation,
g becomes a Lie algebra in the sense of the following definition.

Definition 1.1.6. A Lie algebra over F is a vector space g with a bilinear
anticommutative operation [, ], such that for every X € g, the operator ad X
on g sending Y to [X,Y] is a derivation, i.e.,

[Xa[KZ]]:[[XaY]aZ]+[Ya[X7Z]]7 XY, Z €g.

Another common way to formulate the last equality is the so called Jacobi
identity, [[X,Y], Z]+[[Y, Z], X]+[[Z, X],Y] = 0. We will only work with finite-
dimensional Lie algebras in this book, so whenever we say “a Lie algebra” we
mean a finite-dimensional one.

One defines notions as morphisms, Lie subalgebras, ideals, etc. in the usual
way.
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Example 1.1.7. The vector space M, (F) with the commutator
[A,B] = AB — BA, A, B € M,(FF)

is a Lie algebra over F. We denote this algebra by gl(n,F).

Proposition 1.1.8. If G is a Lie group, then g with the operation [,] as
defined in 1.1.5 is a Lie algebra.

For a general proof of this proposition, see [?], pp. 46-47. We will explain
it for matrix groups, where g turns out to be a Lie subalgebra of gl(n,F).

Examples 1.1.9. Let G be a Lie subgroup of GL(n,F) and denote by g the
Lie algebra of G. Then g is a subspace of M, (F), since GL(n,F) is an open
subset of M, (FF).

Let X € g. We say that a curve « in G corresponds to X if «(0) = I and
a/(0) = X. In that case, for any g € G,

d _ _ _
Ad (9)X = ga(t)g™'|,_y = 9o/ (0)g™" = gXg~".
Namely, we interpreted the calculation in M, (F), where we used the Leibniz
rule for the matrix product and observed that g is constant with respect to ¢.

Let now X,Y € g and let « correspond to X as above. Using the Leibniz
rule again, we see that

d d _
[X,Y] = ad (X)Y = I Ad (a@t)Y|,_, = &a(t)Ya(t) Yoo =
d _
' (0)Y + Y&a(t) Yoy = XY -YX;
namely, differentiating a(t)a(t)”! = I using the Leibniz rule, we see that
%a(t)_1|t:0 = —X. So we see that g is a Lie subalgebra of gl(n,F); in par-

ticular, it is a Lie algebra.

In general, whenever H is a Lie subgroup of G, the Lie algebra h of H
embeds into the Lie algebra g of G as a Lie subalgebra. This is a special case
of the following proposition, which asserts that the correspondence G +— g is
functorial. The proof is straightforward.

Proposition 1.1.10. Let ¢ : G — H be a morphism of Lie groups and let g
and b be the Lie algebras of G and H. Then the differential dp : g — b of ¢
at the identity is a morphism of Lie algebras.

Remark 1.1.11. The Lie algebra g of G can also be defined to consist of left
invariant (smooth) vector fields on G. The left invariance condition means the
following: let I, : G — G be the left translation by g € G, i.e., l4(h) = gh. A
vector field X on G is left invariant if (dly)n, X, = Xgp for all g,h € G. The
Lie algebra operation in this setting is the bracket of vector fields: [X,Y]f =
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X(Y[f)-Y(Xf), for X,Y € gand f a smooth function on G. Here we identify
vector fields with derivations of the algebra C*°(G), i.e., think of them as first
order differential operators.

To relate the two constructions, notice that to any left invariant vector
field one can attach its value at e and conversely, a tangent vector at e can be
translated to all other points of G to obtain a left invariant vector field. One
shows that this identification also respects the commutators; see e.g. [?], pp.
47-48.

We now want to identify the Lie algebras of the matrix groups described
in Examples 1.1.4.

Examples 1.1.12. Suppose G is one of the groups O(p, q), O(n,C), Sp(n,F).
So G is the set of matrices g such that ¢" Hg = H, where H is the matrix
of the bilinear form B defining G. Let X € g and let a be a curve in G
corresponding to X . Then differentiating «(t)” Ha(t) = H at t = 0 we obtain

X"H+HX =0. (1.1)

So, if X is in g, then X is skew symmetric with respect to H. Conversely,
suppose that X € gl(n,F) satisfies (1.1). To see that X € g, it suffices to
exhibit a curve « in G corresponding to X. We claim that such a curve is
given by

at) = e, teR.

Indeed, it is clear that «(0) = I and o/ (0) = X, so we only need to check that
e!X € G for all t. But (1.1) implies that

(tXT)"H = H(—tX)"

for every n > 0 and every t € R, and hence

XH = (i %(tXU”) H=H <§: %(—tX)”) = He 'X,

n=0 n=0

This implies X He!X = H, and since e/ = (e!X)7, this means !X € G
as claimed. So we get that the Lie algebras of O(p, q), O(n,C) and Sp(n,F)
are respectively o(p, ¢), o(n,C) and sp(n,F), the Lie subalgebras of gl(n,F)
defined by (1.1) for the appropriate choice of H.

In a completely analogous way one sees that the Lie algebra of U(p, ¢) is

u(p,q) ={X € gl(n,C) | X*"H + HX =0},

where H = H,, , is the matrix of the hermitian form defining U(p, ¢) and *
denotes the conjugate transpose.

Let us now examine the condition det ¢ = 1. Let a be any curve in
GL(n,F) with «(0) = I. We claim that
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= tr a/(0).

d
T det a(t)|t:0

To see this, write

det a(t) = Z sgn UHa(t)ia(i)a
i=1

ocE€S,,

with S, the symmetric group on n letters. When we differentiate this expres-
sion with respect to t and set ¢ = 0, the only nonzero terms in the above sum
will be the ones with ¢ equal to the identity (because of «(0) = I'). Thus

d n
T det a(t)],_, = ;0/(0)1’7: = tr /(0).

We conclude that the Lie algebra of SL(n,F) is contained in
sl(n,F) = {X € gl(n,F) | tr X = 0}.

Conversely, if X € sl(n,F), then e is a curve in SL(n,F) with velocity X
at I. Namely, !X is in SL(n,F) for all ¢, because

det e = et 4, A € gl(n,F),

as is easily seen by replacing A by its Jordan form.

It now also follows that the Lie algebras of the groups SU(p, q), SO(p, q)
and SO(n, C) are respectively the Lie algebras su(p, ¢), so(p, ¢) and so(n, C),
obtained from u(p, q), o(p, ¢) and o(n, C) by imposing an additional condition
tr =0.

Finally, using similar methods it is not difficult to check that the Lie
algebra of the group B(n,F) of invertible upper triangular matrices is the Lie
algebra b(n,F) of all upper triangular matrices, while the Lie algebra of the
group N(n,F) of unipotent matrices is the Lie algebra n(n,F) of all strictly
upper triangular matrices.

Note how in understanding the examples an important role was played by
the exponentials e*X; a crucial property was that whenever X € g, !X is in
G. The exponential map can be defined and plays a crucial role also in the
general situation. It is closely related to the notion of one-parameter subgroups
in G; these are Lie group morphisms from R into G.

Theorem 1.1.13. Let G be a Lie group with Lie algebra g and let X € g.
Then there is a unique one-parameter subgroup in G with velocity X att = 0.

This theorem is proved by using the theory of ordinary differential equa-
tions; in fact, a one parameter subgroup corresponding to X is an integral
curve for the left invariant vector field on G defined by X.!

The theorem can also be derived from the more general facts about subgroups,
subalgebras and mappings, like in [War|. These more general facts are however again
obtained using differential equations.
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For example, if G = GL(n,F), we can differentiate the condition

p(t+s) = p(t)p(s)

with respect to s and then set s = 0 to obtain ¢'(¢t) = X ¢(t). This differential
equation with the initial condition (0) = I has X as the only solution.

Getting back to the general situation, we denote the one-parameter sub-
group corresponding to X by expy. Putting all the one-parameter subgroups
together, one gets the exponential map exp : g — G, defined by

exp(X) —expy (1), X eg.

It now follows from the uniqueness of one-parameter subgroups that exp y (¢t) =
exp(tX), for every t € R, so the one-parameter subgroups are all given as
t — exp(tX) for various X. Moreover, one shows that exp is smooth and that
it maps a neighborhood of 0 in g diffeomorphically onto a neighborhood of
the identity in G.

For all matrix groups, exp is just the ordinary exponential map, the one
we used in our examples. This is a special case of the following functoriality
principle: if ¢ : G — H is a Lie group morphism, then the diagram

th

expl J{exp
G —* - H
commutes. This again follows from the uniqueness of one-parameter sub-
groups.
If we apply this functoriality principle to ¢ = Int (g) : G — G, we get the
useful formula

gexpX g~ ! =exp Ad (9)X, geG, X €eg.
For p = Ad : G — GL(g), we get the formula
Ad (expX) =e® X, X eg.

1.1.14. Subgroups and subalgebras. After seeing examples, let us now
mention some general results. Most of these are in fact easy to prove assuming
everything we have mentioned above.

If H is a Lie subgroup of G, then its Lie algebra hj C g can be characterized
as the set of all X € g with the property that exp(tX) € H for every ¢ € R.

If on the other hand b is a Lie subalgebra of g, then there is a unique
connected Lie subgroup H of G with Lie algebra . H is generated by the
image of h under the exponential map.

If H is a normal subgroup of G, then its Lie algebra b is an ideal in g,
i.e., [g,h] C h. Conversely, if § is an ideal then the connected subgroup H
corresponding to b is a normal subgroup of G.
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The center Z(G) of G is a closed and therefore Lie subgroup. If G is
connected, then the Lie algebra of Z(G) is the center of g, 3(g), consisting of
all X € g such that [X,Y] =0 for all Y € g. Also, if G is connected, Z(G) is
the kernel of Ad : G — GL(g). On the other hand, it is clear that 3(g) is the
kernel of ad : g — gl(g).

It follows that a connected Lie group is abelian if and only if its Lie algebra
is abelian.

1.1.15. Some remarks about classification. Finally, let us say a few words
about classifying Lie groups and algebras.

The first question to settle is: to what extent is a Lie group G determined
by its Lie algebra g? First, if two groups G and G’ have the same identity
component, then their Lie algebras are obviously the same. For example, the
group O(n) has two connected components, one of which is the idenity com-
ponent SO(n). (It is an easy exercise to see that SO(n) is connected, and then
the above fact is clear from the fact that an orthogonal matrix has determi-
nant +1.) Consequently, the Lie algebras of O(n) and SO(n) coincide, i.e.,
o(n) = so(n). This is also obvious from the algebraic point of view: a skew
symmetric matrix has zeros on the diagonal, hence its trace is automatically
Zero.

Second, even if G and G’ are both connected, their Lie algebras can still
coincide. An example of this situation is the well known double covering map
SU(2) — SO(3), obtained by letting SU(2) viewed as the unit quaternions act
on R? viewed as purely imaginary quaternions via (quaternionic) conjugation.
(We will later on explain this example in more detail, when we encounter the
Spin group.) In the presence of a covering map, the two Lie algebras must
coincide; in the above example, su(2) = s0(3), as can also be easily checked
algebraically.

This is where the ambiguity ends: a connected Lie group is determined by
its Lie algebra up to coverings. That is, there is a unique connected simply
connected Lie group G with a given Lie algebra g, and all connected G with
Lie algebra g are covered by G. Furthermore, the kernel of a covering G — Gis
a discrete central subgroup of G, which can be identified with the fundamental
group of G.

An important feature of simply connected groups is the following lifting
property; for a proof, see [War], p. 101, or [?], p. 53. The idea is that one gets
the graph of ¢ as the Lie subgroup of G x H corresponding to the graph of
1, which is a Lie subalgebra of g x b.

Theorem 1.1.16. Let G be a simply connected Lie group with Lie algebra g.
Let H be any other Lie group with Lie algebra §. Let ¢ : g — b be a Lie
algebra morphism. Then there is a unique Lie group morphism ¢ : G — H
with differential equal to 1.

The second topic we wish to mention is the question of the kind of Lie
groups and algebras one wishes to study. We will formulate some relevant de-
finitions for Lie algebras and omit the discussion of analogous group theoretic
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definitions; let us just say that more or less a Lie group is “of the same kind
as its Lie algebra”.

For a Lie algebra g, define C'g = D% = g, and inductively C?*lg =
[g,Cg], Di*1g = [D'g, D'g]. Then g is called nilpotent if C'g = 0 for large i
and g is called solvable if D'g = 0 for large i. A typical example of a nilpotent
Lie algebra is the Lie algebra n(n,F) of strictly upper triangular matrices. A
typical example of a solvable Lie algebra is the Lie algebra b(n,F) of upper
triangular matrices. All subalgebras and quotients of nilpotent (respectively
solvable) Lie algebras are themselves nilpotent (respectively solvable). Fur-
thermore, if s C g is a solvable ideal such that the quotient g/s is also solvable,
then g is solvable.

A Lie algebra g is called simple if it has only trivial ideals. For example,
the algebras sl(n,F), so(n,F) and sp(2n,F) are simple, except for s((1,TF)
and so(n,F) when n equals 1,2 or 4. For F = C, these almost exhaust the
examples of simple Lie algebras; there are just five more examples - the so
called exceptional Lie algebras. For F = R, there are also the examples su(p, q)
and so(p, q) we mentioned, and some more that we have not mentioned.

A Lie algebra g is called semisimple if it is a direct sum of simple ideals,
and reductive if it is the direct sum of its center and a semisimple ideal. For
example, gl(n,F) is reductive - it has a one-dimensional center consisting of
scalar matrices, and a direct complement to the center is the simple Lie algebra
sl(n,TF).

Any Lie algebra is a semidirect product of its largest solvable ideal (the
radical) and a semisimple subalgebra. This is the so called Levi decomposition.
It means that to some extent, understanding solvable and semisimple Lie
algebras is enough to understand all Lie algebras.

A Lie group G is called semisimple if the Lie algebra of G is semisimple.
Following Wallach [W] we define a real reductive group or a reductive Lie
group as follows. Let fi,---, f;, be complex polynomials on M (n,C) such
that each f; is real valued on M (n,R) and such that the set of simultaneous
zeros of f; in GL(n,C) is a subgroup G¢ of GL(n,C). Then G is called an
affine algebraic group defined over R. The subgroup Gg = G¢ N GL(n,C) is
called the group of real points. By a real reductive group or a reductive Lie
group we mean a finite covering group G of an open subgroup Gy of Gg.
For example, GL(n,F) is reductive and every connected semisimple Lie group
with finite center is reductive. Thus, we can define a Cartan involution on Lie
algebra g of a reductive Lie group G by 6(X) = —X*.

We are primarily interested in studying semisimple or reductive Lie alge-
bras (and groups), and we do not mind assuming the groups are connected
whenever it is convenient to do so. One can not however completely ignore
other situations; for example, as we will see, in the representation theory of
semisimple Lie algebras, a crucial role is played by the maximal solvable sub-
algebras.
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1.2 Finite-dimensional representations

Definition 1.2.1. Let V be a complex n-dimensional vector space. A repre-
sentation of a Lie group G on V is a continuous group homomorphism

m: G — GL(V).

A representation of a (real or complex) Lie algebra g g on V' is a morphism
of Lie algebras

p:g—gl(V).

We have already met some representations: Ad : G — GL(g) is a repre-
sentation of G on its Lie algebra, while ad : g — gl(g) is a representation of
g on itself. Bot of these are called adjoint representations.

If 7: G — GL(V) is a representation, it follows that 7 is smooth, i.e., it
is a morphism of Lie groups. Namely, any continuous group homomorphism
¢ between Lie groups is automatically smooth, as follows from Cartan’s The-
orem 1.1.3 applied to the graph of ¢. Hence we can differentiate 7 at e and
obtain a homomorphism

dm:g— gl(V)

of Lie algebras, i.e., a representation of the Lie algebra g of G. We will often
denote dm just by 7; this should not create confusion.

The main idea of passing from G to g is turning a harder, analytic prob-
lem of studying representations of G into an easier, purely algebraic (or even
combinatorial in some sense) problem of studying representations of g. Ac-
tually, since we are only considering complex representations, we can as well
complexify g and study representations of g¢. Thus we will from now on speak
mostly about complex Lie algebras and their representations. To simplify no-
tation, and avoid writing gc many times, we will from now on denote the
(real) Lie algebra of G by go, and its complexification by g.

Definition 1.2.2. A representation 7 of a Lie group G (respectively a Lie
algebra g) on V is irreducible if it has no nontrivial subrepresentations, i.e., V
has only trivial subspaces {0} and V' which are invariant under G (respectively
under g).

An important special class of representations of G consists of unitary rep-
resentations. A representation m of G on V' is unitary if V has an inner product
such that all the operators 7(g), g € G, are unitary. Then for any X € go, the
Lie algebra of G, m(X) is skew hermitian.

1.2.3. Complete reducibility If 7 is unitary, then it is completely reducible,
i.e., every invariant subspace has an invariant direct complement. Namely, if
W C V is invariant for G, then W is also invariant for G: if v € W+ and
g € G, then

(m(g9)v, w) = (v, 7(g~)w) =0, weW,
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so m(g)v € W.

We will now describe the so called unitarian trick due to Weyl; it is a
short way of showing that finite-dimensional representations of semisimple
Lie algebras or groups are always completely reducible. The point is to make
use of compact Lie groups, whose representation theory is relatively easy.
First, any compact Lie group K has a finite measure dk invariant under left
translations, i.e., satisfying

[ swnas= [ sar.

for any ¥’ € K. To see this, take a basis of the cotangent space at ¢ € G,
and using translations produce left invariant 1-forms, defining a basis of the
cotangent space at any point. Taking the exterior product of all these forms
will produce a left invariant volume form on K. (This actually works for any
Lie group G, but the resulting measure is not finite unless G is compact.)

Having a finite left invariant measure, we can now proceed to conclude
that any finite-dimensional representation (7, V') of K is unitary, in the sense
that there is a K-invariant Hermitian inner product on V. Namely, taking
any inner product (,) on V', we can average it over K to produce an invariant
inner product (, ):

(v,w) = /K(W(k)v,w(k)w)dk, v,we V.

The new inner product is clearly K-invariant by the K-invariance of the mea-
sure. Now since V is in fact unitary, it is completely reducible as we saw
above.

Let now g be any complex semisimple Lie algebra. Then there exists a
compact Lie group G. whose complexified Lie algebra is g. The (real) Lie
algebra gy of G, is called the compact form of g. For a proof of the existence
of compact forms, see e.g. [He]. Moreover, G. can be taken to be simply
connected, since the universal covering group of a compact semisimple Lie
group is compact. This is a fundamental theorem of Weyl. Its proof can be
found e.g. in [?], Chapter 3.

For example, if g = sl(n,C), we can take G, = SU(n), while for g =
s0(n, C) we can take G. to be the group Spin(n), the universal (double) cover
of SO(n).

Now by 1.1.16 any representation V' of gy on a complex vector space, which
is the same as a representation of g = (go)c, can be lifted to a representation
of G,. It follows that the representation V of g is completely reducible. This
result is also called Weyl’s Theorem.

In view of complete reducibility, to understand finite-dimensional represen-
tations of semisimple Lie algebras, it is enough to understand the irreducible
representations. This is what we will outline in the rest of this section.
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Example 1.2.4. The most basic example and the first one to study is the
description of irreducible finite-dimensional representations of g = s[(2,C). It
is not only an example, but also an extremely useful tool in the study of more
complicated representations of larger Lie algebras.

There is an obvious basis for g: take

R Bt A i

The commutator relations in this basis are readily calculated to be
[he] =2e;  [h fl==2f; e fl="h

We are going to show the following: for every positive integer k, there is up
to isomorphism exactly one irreducible representation of g of dimension k.
Moreover, this representation has a distinguished basis v_,,, v_p+2,..., Un—2,
vn, where n = k—1 and each v; is an eigenvector of 7(h) with the eigenvalue i.

Furthermore, w(f)vp—2; = vn_2j_2 for j =0,1,...,n—1, while n(f)v_, = 0.
Finally,

m(€)un—2; = j(n — j+ 1)vn_2j42 (1.2)
for j = 1,2,...,n, while w(e)v, = 0. Here is a picture describing our repre-

sentation V = V,,:

€ € € €

Co_, Cvo_pq2 .. Cvy_a Co,,
— — — —
f f f f
The numbers —n, —n+2,...,n — 2, n, i.e., the eigenvalues of 7(h), are called

the weights of V,,. The weight n is called the highest weight, and the vector v,,,
which is unique up to scalar, is called a highest weight vector. It is character-
ized by the condition 7(e)v, = 0. We will see later that while in an irreducible
representation of a general semisimple Lie algebra there can be many vectors
of a given weight, there is always only one highest weight vector up to scalar.

Let us now prove the above claims. Let V' be an irreducible finite-
dimensional representation of g. The operator w(h) on V has at least one
eigenvalue A € C. Let us fix A and a corresponding eigenvector vy in the
eigenspace V).

Let now v € V be an eigenvector of 7(h) with any eigenvalue p € C. Then
since w(h)w(e) — w(e)mw(h) = n([h, e]) = 27 (e), it follows that

w(h)m(e)v = w(e)w(h)v + 2w (e)v = (u + 2)mw(e)v.

In other words, m(e)v is an eigenvector of w(h) with the eigenvalue p + 2. By
an analogous calculation, 7(f)v is an eigenvector of 7(h) with the eigenvalue
i — 2. This shows that if we add up all eigenspaces of w(h) with eigenvalues
W € X+ 27, we are getting a g-invariant subspace of V. This subspace is
nonzero since we assumed V) # 0; thus it has to be all of V since V is
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irreducible. Furthermore, only finitely many V), can be nonzero, since V' is
finite-dimensional. Replacing A with A 4+ 2k for the largest possible k such
that Vijor # 0, we can thus assume that V), # 0 implies 4 = A — 2j for some
j € Z4. Tt follows that 7(e)Vy = 0, and in particular 7(e)vy = 0 for our fixed
eigenvector with the eigenvalue A.

Consider now the vectors m(f)ivy € Vy_g; for j = 0,1,2,.... Since all
these vectors are linearly independent and V' is finite-dimensional, there must
be some j such that 7(f)7vy = 0. We fix the smallest such j, jo > 0. On the
other hand, we claim that for any ¢ € Z,

m(e)m(f)ivx = i(A —i+ Dr(f) " toa. (1.3)

where the right hand side is defined to be zero if ¢ = 0.
This claim is proved by induction on 4. It is true for ¢ = 0. Assuming it is
true for some 4, we use the relation [e, f] = h to calculate

m(e)n(f)ox = (x(f)m(e) + 7 (k) 7
=a(f) (i(A =i+ D7(f)" " oa) + (A = 20)7
= (i + 1A= )7n(f) vr,

and this is the claim for ¢ + 1.
In particular, for i = jy, we conclude that jo(A—jo+1) = 0,1.e., A = jo—1.
Denoting jo — 1 by n € Z4, we see that the vectors

U = Ux, Une2 = T(F)Vny- oy Vopga = T(F)"  vn, vop = 7(f) "0y

span a nonzero g-invariant subspace of V' which thus has to be all of V. In
particular, dim V is n + 1, and we have exhibited a basis with the required
properties; (1.2) is exactly the claim (1.3).

We have now shown the uniqueness of a representation of given dimension.
Existence can be proclaimed obvious, in the sense that if we take a vector
space with the action of h, e and f given on the basis elements as above,
then one can check the commutation relations and thus the representation
is constructed. On the other hand, these representations also arise in many
concrete realizations in examples. Here is one such realization; we invite the
reader to check that this indeed is the irreducible representation V;,.

Let V' be the space of complex polynomials in two variables z; and z;
of degree n. Denote by 0; and 0y the partial derivatives with respect to the
variables. Then

h v+ 2900 — 2’131, € 2’231, f — 2102
defines an irreducible representation of s{(2,C) on V.

In order to describe irreducible finite-dimensional representations of a gen-
eral semisimple Lie algebra g over C, we first need to describe the structure of
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g; this can be viewed as studying the adjoint representation. Namely, we need
analogues of the elements h, e, f of s[(2,C) and their commutation relations.
All of the things we are going to say (and omit) can be found in many books;
we recommend [Knl], Chapter IV, [?], Chapter 5, or [Hum]. What we will
do is state the results in general, and illustrate them for g = sl(n, C), where
everything can be seen directly.

1.2.5. Cartan subalgebras and roots. The analogues of h are the elements
of a Cartan subalgebra b of g. By definition, b is a maximal abelian subalgebra
of g consisting of semisimple elements, i.e., those H € g for which ad H is a
semisimple operator on g. This means that we can simultaneously diagonalize
all ad H, H € . The nonzero joint eigenvalues of these are called the roots of
g and the corresponding joint eigenspaces are called the root spaces. The set
of all roots is denoted by A; it is a subset of h*. The root spaces are denoted
by ga, @ € A. Thus we can decompose g as

9=009® P 0o,

acA

where go denotes the joint eigenspace with eigenvalue zero. In fact, one shows
that do = h

For g = sl(n,C), we can choose h to be the Lie subalgebra of g consisting
of diagonal matrices. Let us diagonalize ad H for H = diag (hy,...,h,) € b.
Let E;; be the matrix whose all entries are zero except for the ij entry which
is equal to one. Then a simple calculation shows that

[H, Eij] = (hi — hj)Ej.

We see that the roots are the functionals on b given by h — h; — hj, i # j.
We will denote them by €; — €;, where ¢; denotes the functional A — h; on b.
The root space corresponding to €; — €; is spanned by Ej;;. Observe that for
every root a =€; — €, —a =¢€; — €; is also a root.

For general g, one shows that a Cartan subalgebra always exists (and is
unique up to an inner automorphism). It is still true in general that all g, are
one-dimensional, and that —a is a root whenever « is. Moreover, for every «
we can pick elements hy € b, eq € go and f, € g_o spanning a subalgebra
of g isomorphic to sl(2,C), with h,, e, and f, corresponding respectively to
h, e, f under the isomorphism.

For g = sl(n,C), if @ = ¢; — ¢;, we can choose ho = E;i — Ejj, ea = Ejj
and ,f()/ = Eﬂ

The real span of all h,, a € A, is a real form hg of h. For g = sl(n,C), bhr
consists of real diagonal matrices. The roots take real values on hgr and thus
span a real form by of h*.

1.2.6. Killing form. There is a symmetric bilinear form on a semisimple Lie
algebra g called the Killing form:
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B(X,)Y)=tr(ad XadY), X, Y €g.

The form B is nondegenerate and invariant under any automorphism ¢ of g,
ie.,
B(pX,¢Y)=B(X,)Y), X Yeg

This follows immediately from the observation that ad (¢X) = poad Xogp~!

for any X € g.
In particular, setting ¢ = e*?d Z for Z € g and differentiating with respect
to t € R, we see that

B(ad (2)X,Y)=-B(X, ad (2)Y), X,Y,Z€g.

Also, if G is any Lie group with complexified Lie algebra g, then B is invariant
under Ad (g) for any g € G.

For g = sl(n,C), one can replace B with a simpler form with the same
properties: B1(X,Y) = tr XY In fact, B; and B are proportional.

It immediately follows from the invariance that for o, 5 € AU {0},

B(ga,95) =0, unless a+ (3 =0.

It follows that B is nondegenerate on g, X g_, for any a € AU {0}. In
particular, B is nondegenerate on h. It is also nondegenerate on hr and in
fact induces a positive definite inner product there. Since we can use B to
identify br with g, we can also transfer this inner product to hi. We denote
the transferred inner product by (, ). For g = sl(n, C), if we identify the space
of all real diagonal matrices with R™ in the obvious way, the form B; becomes
the standard inner product. The algebra hgr then becomes the orthogonal of
the vector (1,1,...,1). The same is true for the dual spaces.

1.2.7. Positive roots and simple roots. A system of positive roots is a
subset AT of A such that for every o € A, exactly one of the elements +o is
in AT, and if o, 3 € AT then o + (3 is either in A, or is not a root at all.

One way to construct a system of positive roots is to pick some H € hgr not
annihilated by any of the roots, and then proclaim « to be in A if a(H) > 0.
Such H are called regular.

For g = (n,C) (n > 2), if we take H = diag (n — 1,n—3,...,—n+ 1),
then the positive roots are €; — €; with ¢ < j.

A positive root is called simple if it can not be written as a sum of two
positive roots. For our choice of positive roots for sl(n,C), the corresponding
simple roots are €; — €3, €3 — €3, ..., €1 — €.

Simple roots form a basis for h*; moreover, every positive root can be
written as a linear combination of simple roots with all coefficients in Z . For
example if g = sl(n, C), the for any i < j

€ —¢€ = (6 —€ir1) + o+ (-1 — €5).
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Every positive root system defines a positive chamber in hg, consisting of all
X such that a(X) > 0 for all @ € AT. For example, the element H we used
to define AT is in the positive chamber. More generally, a Weyl chamber is
a connected component of the complement in hr of the union of Ker « for
a € A. Every Weyl chamber is the positive chamber for exactly one choice of
a positive root system. It is clear that also in general the Weyl chambers are
open cones with vertex at 0.

Identifying b with hr by means of our inner product (,), we can define
Weyl chambers also in by; they are connected components of what is left of
hi after removing the hyperplanes at, a € A.

1.2.8. Weyl group. To each root o we can associate the orthogonal reflection
Sq of b7 with respect to at. Tt is defined by

2(a, A)

(@, @)

SaA = A — a, A € bp.

Then A is preserved by all s,, a € A. Moreover, for any «, 8 € A, the number
-
is equal to B(ha), so it is a weight in a representation of sl(2,C). (These
properties say that A is a root system in hf in the abstract sense.)

For g = sl(n,C), the reflection sc,_, sends A\ = (A1,...,\n) € by =
(1,...,1)r CR" to

appearing in the definition of s, is an integer; namely, this number

A — (Ei — €5, )\)(Gl - Gj).

This has the same components as A, except that the i-th and j-th components
exchanged places. It is thus easily seen that A is preserved, and the numbers
(€; — €5, € — €5) are obviously integers.

The finite group of reflections generated by s, for a € A is called the Weyl
group of A and it is denoted by W. For sl(n,C), W is S,,, the symmetric group
on n letters. Namely we saw that s,_, induces the transposition 7 < j on
the coordinates.

The group W acts simply transitively on the set of all possible positive
root systems, or equivalently, on the set of all Weyl chambers.

1.2.9. Triangular decomposition. Since for any two positive roots « and (3
one has [ga, 93] C ga+s and the sum of two positive roots is either a positive
root or not a root at all, we see that the positive root spaces span a subalgebra
of g which we denote by n. The Lie algebra n is nilpotent.

The same applies to the Lie algebra n~ spanned by the negative root
spaces. These two together with h give a triangular decomposition

g=n_ &hodn

For g = sl(n,C) with our choice of h and of positive roots, n consists of
the strictly upper triangular matrices and n~ consists of the strictly lower
triangular matrices.
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After describing the structure of g, we are now ready to describe the irre-
ducible finite-dimensional representations (m, V') of g. We will mostly follow
the approach of [GW].

The first basic fact is that 7(H), H € b can be simultaneously diagonalized
on V. To see this, note first that there is a joint eigenspace of all 7(H), on
which each 7(H) acts by a scalar A(H). The resulting functional A € h* is
called a weight of 7, and the joint eigenspace is denoted by V) and called
a weight space corresponding to A. It is immediate that for any root « and
weight A, 7(ga)Va C Vita- So if we choose any weight A, then the sum of all
the weight spaces V), with u — A equal to a combination of roots with integer
coefficients forms a subrepresentation of V. By irreducibility, this is all of V.
Hence V' decomposes as a direct sum of all weight spaces.

Note that in this terminology, roots are nothing else but the nonzero
weights of the adjoint representation.

In view of finite dimensionality, we can now choose a maximal weight A
for the following partial order on weights: A > p if A — p is a sum of positive
roots. Then X is called a highest weight for V. Let us fix a nonzero vy € V.
By irreducibility, vy is a cyclic vector for V| i.e., the elements

T(X)7(Xs) ... m(X)vs,  k€Zy, Xi,...XpEg (1.4)

span V. We can assume that all X; in (1.4) are either in b, or are root vectors.
In fact, the elements of h can be skipped: if H € h and if X, are root vectors,
then

T(H)m(Xay) .. 7(Xa Jox = A+ a1 + - + o) (H)1(Xa,) - .. 7(Xa, J0r.

Furthermore, it is a fact that whenever «, 3 and a+0 are roots, then [gq, 93] =
ga+8- This means that we can assume all the X; in the expressions (1.4) are
actually e, or f, where « is a simple root.

We claim that in fact already

T(for) - - T(for )V, ke€Zy, ou,...op simple roots

span V. To see this, it is enough to show that the span of these vectors — call
it Z —is a subrepresentation (Z is nonzero since it contains vy ). Z is obviously
invariant under n~ and b, so we only need to see it is invariant under n. For
that, it is enough to see that Z is invariant under e, for every simple root «.

But if o and @ are simple roots, then [eq, fg] is either 0, if & # (3, or hq
if @ = (. Indeed, it is clear that the difference of two simple roots cannot be
a root: if a — 3 = =y, then if v is positive we get « = 3 + vy, so alpha is not
simple, and if v is negative, then 8 = a + (—7), so § is not simple.

So we see that in calculating 7(eq)m(fa,) - - T(far )V, We can commute
eq to the right, where it kills vy, and the commutators that are left contain
fs’s and perhaps a few h,’s — but these we already saw can be eliminated.

Hence we conclude that all weights of V' are of the form A — Y. ¢;ay,
where «a; are simple roots and ¢; are nonnegative integers. In particular, A is
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the unique highest weight of V, i.e., A > u for any weight p of V. We also
proved that vy is up to scalar the only vector of weight A, i.e., dim V) = 1.

The next thing we want to show is that V is uniquely determined by its
highest weight. Indeed, suppose W is another representation with the same
highest weight A and with a highest weight vector wy. Then z\ = (v, wy)
generates an irreducible subrepresentation Z of V @ W. Restricting to Z the
projections of V@ W to V respectively W, we obtain nonzero maps from Z
to V respectively W. These maps have to be isomorphisms by the following
simple and basic fact, and hence V"= W.

1.2.10. Schur’s Lemma. Let M and N be irreducible modules for a Lie
algebra g and let ¢ : M — N be a nonzero map respecting the g-actions. Then
@ is an isomorphism. Moreover, this isomorphism is unique up to a scalar
multiple. The same is true for representations of a group.

Proof. The kernel and the image of ¢ are g-invariant, so they have to be zero
respectively N by irreducibility of M and N. For the second statement, if
©1,92 : M — N are isomorphisms, then @5 Loy is an automorphism of M.
This map has an eigenspace (because our modules are always over C). This
eigenspace is g-invariant, hence it must be all of M and the map is a scalar.

1.2.11. Dominant weights. We now want to describe which A € h* can
show up as highest weights of irreducible finite-dimensional representations.
It is easy to obtain the necessary conditions using the s[(2, C) theory. Namely,
the highest weight vector vy will also be a highest weight vector for every
copy of sl(2,C) corresponding to a positive root «. Thus, the corresponding

eigenvalue of h,, that is, A(h,) = 2(,N)

It follows that for any weight u(aé?)any finite-dimensional representation,
2((5(5)) is an integer for every root . All u satisfying this condition are called
weights for g. The lattice of all integer combinations of weights is called the
weight lattice of g. The weights that in addition satisfy % > 0 for all
positive roots « are called dominant (with respect to our fixed system of
positive roots AT). Another way to express dominance is as belonging to the
closure of the positive Weyl chamber.

is a nonnegative integer.

1.2.12. Construction of irreducible finite-dimensional representa-
tions The remaining question is if every dominant weight is the highest weight
of an irreducible finite-dimensional representation. The answer is yes, and the
representations in question can be constructed in several ways. One way is
to first construct certain universal representations with highest weight A, the
so called Verma modules, and then obtain the irreducible finite-dimensional
modules as their quotients. This is for example done in [Hum| and [Knl]; we
will define Verma modules in 1.4.2. In examples, one can instead take the
approach of [GW] and first construct the so called fundamental representa-
tions. These correspond to the fundamental weights, which are the smallest
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possible weights, in the sense that if the simple roots are ay, ..., q, then the
fundamental weights wy, . ..,w; satisfy
2o, wi) _ 5
(aiv a?) Y

The fundamental weights generate the weight lattice over Z, hence the name.
Once the fundamental representations are constructed, one can construct
other (larger) representations as follows. Let (m, V/(A)) and (m,, V(1)) 