MATH 1090-9: QUIZ 10^{1}
December 6, 2007
calculators are optional!
(You may leave your solution in a form which can be entered into a calculator to get a numerical answer.)

1. Suppose $\$ 200,000$ is used to establish an ordinary annuity that earn 6% annually (compounded quarterly) and which pays $\$ 4,500$ at the end of each quarter. How long will it be until the account balance is $\$ 0$?

Solution. Here $A=200,000, R=4500, i=0.06 / 4=0.015$, and we seek n in the following equation:

$$
200000=4500 \cdot\left[\frac{1-(1+0.015)^{n}}{0.015}\right]
$$

We isolate the exponential and find

$$
1.015^{-n}=1-\frac{200000 \cdot 0.015}{4500}
$$

So

$$
n=-\frac{\ln \left(1-\frac{200000 \cdot 0.015}{4500}\right)}{\ln (1.015)}
$$

which give $n \approx 74$ quarters (which is about 18 and a half years).
2. What is the monthly payment on a $\$ 100,00030$-year mortgage at an annual interest rate of 9% ?

Solution.

$$
\begin{aligned}
R & =100000\left[\frac{0.09 / 12}{1-(1+(0.09 / 12))^{-360}}\right] \\
& =\$ 804.62
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ Present value of ordinary annuity formula ($\S 6.4$):

 $$
 A_{n}=R \cdot\left[\frac{1-(1+i)^{-n}}{i}\right]
 $$

 Amortization formula (§6.5):

 $$
 R=A_{n} \cdot\left[\frac{i}{1-(1+i)^{-n}}\right]
 $$

