1.

(a) F	(b) F	(c)	F	(d)	F

2. Recall the revised problem \#2: we are to find the sum of the first thirty terms of the arithmetic sequence with difference 3 and thirtieth term 103. If the thirtieth term is 103 , then the first term is $103-3 \cdot 29=16$. Now we use the sum formula

$$
a_{1}+\cdots+a_{30}=\frac{1}{2}(30)\left(a_{1}+a_{30}\right)=15 \cdot 119=1785 .
$$

3. (a)

$$
\begin{gathered}
x+y \leq 25 \\
60 \leq 6 x+11 y \leq 220 \\
x \geq 0, y \geq 0 .
\end{gathered}
$$

(b) $P=10000 x+18000 y$
(c) First graph the region described by the equations in (a) and locate the corners. This region will be closed and bounded. Since a linear function restricted to a closed and bounded region attains its maximum at corners, we then plug in the corner values into the equation for P in (b) to find the maximum. (If the maximum is achieved at two corners, it is also achieved on the line segment between them.)

4 (a) A^{2} doesn't make sense.
(b)

$$
B^{3}=\left(\begin{array}{ll}
0 & 8 \\
8 & 0
\end{array}\right) .
$$

(c) $\operatorname{det}(C)=1$.
5. (a) 6 .
(b) $\frac{1}{e^{3}}$.
(c) -3 .
6. Plot the lines $y=x$ (dashed) and $y=-2-2 x$ (solid). These lines meet at ($-2 / 3,-2 / 3$). The two lines break the plane into four parts. Shade the part that contains the point $(0,-2)$.

7(a)

$$
\begin{aligned}
\log _{a}\left(\frac{z}{\sqrt{y z}}\right) & =\log _{a}(z)-\frac{1}{2} \log y-\frac{1}{2} \log _{a} z \\
& =\frac{1}{2} \log _{a} z-\frac{1}{2} \log _{a} y \\
& =\frac{1}{2}(1.2)-\frac{1}{2}(3)=-0.9
\end{aligned}
$$

(b)

$$
\begin{aligned}
\log _{a}\left(x^{2} z^{100}\right) & =2 \log _{a} x+100 \log _{a} z \\
& =2(-2.4)+100(1.2)=115.2
\end{aligned}
$$

8. $\frac{2}{3} \log _{a}(x+1)$

9(a) 1000.
(b)

$$
t=\frac{\ln \left(\frac{\ln (P / 1000)}{\ln (0.005)}\right)}{\ln (0.3)} .
$$

