MATH 1010-2: PRACTICE EXAM \#2

1 (10 points). Solve the following equation for x :

$$
\sqrt[3]{2 x+1}+2=5
$$

Solution. First isolate the radical by subtracting 2 from both sides:

$$
\sqrt[3]{2 x+1}=3
$$

Now cube both sides to get

$$
2 x+1=27
$$

So

$$
2 x=26,
$$

and $x=13$.

2 (10 points). Solve the following equation for x :

$$
3 x^{2}+4 x-2=2 x^{2}+7 x+8
$$

Solution. Bring everything onto the left-hand side to get

$$
x^{2}-3 x-10=0
$$

This is one that factors as

$$
(x-5)(x+2)=0 .
$$

So either $x-5=0$ of $x+2=0$. Thus $x=5$ or $x=-2$. Alternatively you could have arrived at this
answer by either completing the square or using the quadratic formula.

3 (15 points). Graph the following system of linear inequalities:

$$
\begin{aligned}
& x+y \leq 3 \\
& x-1 \leq 1
\end{aligned}
$$

Clearly label any vertices in your graph.
Solution. The graph consists of two solid lines meeting at $(2,1)$. One line is a vertical line though $(2,0)$. The other has slope -1 and y-intercept 3 . The region which is to the left of both lines is shaded.

4 (10 points).
(a) Solution. We have

$$
\operatorname{det}\left(\begin{array}{rr}
1 & -2 \\
3 & 5
\end{array}\right)=(1)(5)-3(-2)=5+6=11 .
$$

(b) Write $(3+2 i)(2-7 i)$ as a complex number in standard form.

Solution. We use the distributive law (FOIL) and the fact that $i^{2}=-1$ to get

$$
\begin{aligned}
(3+2 i)(2-7 i) & =6-21 i+4 i-14 i^{2} \\
& =6+(4-21) i-14(-1) \\
& =6-17 i+14 \\
& =20-17 i
\end{aligned}
$$

5 (10 points). Simplify

$$
\left(3-7 x+8 x^{2}\right)-\left[(x+3)^{2}-2(x-3)\right]
$$

Write your answer as a polynomial in standard form.
Solution. We use the order of operations on the second term to obtain

$$
\left(3-7 x+8 x^{2}\right)-\left[x^{2}+6 x+9-2 x+6\right]
$$

Grouping like terms we get

$$
\left(3-7 x+8 x^{2}\right)-\left[x^{2}+4 x+15\right]
$$

or

$$
3-7 x+8 x^{2}-x^{2}-4 x-15
$$

Again grouping like terms we get

$$
7 x^{2}-11 x-12 .
$$

6 (10 points). Perform the indicated operation and simplify:

$$
\frac{-x}{x+3}+\frac{2 x+1}{x+7}
$$

Solution. The common denominator in this case is $(x+3)(x+7)$. So we rewrite the original expression as

$$
\frac{-x}{x+3} \cdot \frac{x+7}{x+7}+\frac{2 x+1}{x+7} \cdot \frac{x+3}{x+3} .
$$

Simplifying we obtain

$$
\frac{-x^{2}-7 x+2 x^{2}+x+6 x+3}{(x+3)(x+7)}
$$

or

$$
\frac{x^{2}+3}{(x+3)(x+7)} .
$$

7 (10 points). Rationalize the denominator of the following expression and simplify:

$$
\frac{\sqrt{5}+1}{1-\sqrt{2}}
$$

Solution. We mulitply by the conjugate $1+\sqrt{2}$ and FOIL as follows:

$$
\begin{aligned}
\frac{\sqrt{5}+1}{1-\sqrt{2}} & =\frac{\sqrt{5}+1}{1-\sqrt{2}} \cdot \frac{1+\sqrt{2}}{1+\sqrt{2}} \\
& =\frac{(\sqrt{5}+1)(1+\sqrt{2})}{(1-\sqrt{2})(1+\sqrt{2})} \\
& =\frac{\sqrt{5}+\sqrt{10}+1+\sqrt{2}}{1-(\sqrt{2})^{2}} \\
& =\frac{\sqrt{5}+\sqrt{10}+1+\sqrt{2}}{1-2} \\
& =\frac{\sqrt{5}+\sqrt{10}+1+\sqrt{2}}{-1} \\
& =-(\sqrt{5}+\sqrt{10}+1+\sqrt{2}) \\
& =-\sqrt{5}-\sqrt{10}-1-\sqrt{2} .
\end{aligned}
$$

8 (10 points). Simplify the following complex fraction:

$$
\frac{\left(\frac{x+3}{x+5}\right)}{\left(\frac{1}{x^{2}-25}\right)} .
$$

Solution. Invert and multiply to obtain

$$
\frac{(x+3)\left(x^{2}-25\right)}{x+5}
$$

Since $x^{2}-25=(x+5)(x-5)$ we have

$$
\frac{(x+3)(x+5)(x-5)}{x+5}
$$

Finally, we can cancel to arrive at

$$
(x+3)(x-5) \quad x \neq-5
$$

9 (5 points). Using fractional exponents, rewrite the following expression without radicals and simplify:

$$
\begin{aligned}
& \frac{(3 u-2 v)^{2 / 3}}{\sqrt{(3 u-2 v)^{3}}} \\
& \frac{(3 u-2 v)^{2 / 3}}{\sqrt{(3 u-2 v)^{3}}}
\end{aligned}
$$

Solution. We first remove the square-root in the denominator

$$
\frac{(3 u-2 v)^{2 / 3}}{\left[(3 u-2 v)^{3}\right]^{1 / 2}}
$$

Since successive exponents multiply, we get

$$
\frac{(3 u-2 v)^{2 / 3}}{(3 u-2 v)^{3 / 2}}
$$

Now we subtract exponents to obtain

$$
(3 u-2 v)^{2 / 3-3 / 2}=(3 u-2 v)^{-5 / 6} .
$$

10 (10 points). Rewrite the following expression without any fractional exponents, negative exponents, or radicals:

$$
\frac{8^{1 / 2} \sqrt{x^{3}}}{8^{1 / 6} \sqrt{x^{9}}}
$$

Solution. First remove the square-roots

$$
\frac{8^{1 / 2}\left(x^{3}\right)^{1 / 2}}{8^{1 / 6}\left(x^{9}\right)^{1 / 2}}
$$

and multiply the successive exponents to get

$$
\frac{8^{1 / 2} x^{3 / 2}}{8^{1 / 6} x^{9 / 2}}
$$

Now subtract the exponents

$$
8^{1 / 2-1 / 6} x^{3 / 2-9 / 2}
$$

to obtain

$$
8^{1 / 3} x^{-3}
$$

and finally

$$
\frac{2}{x^{3}} .
$$

11 (10 points). Solve for x by any method you choose:

$$
(x+2)^{2}-15=0
$$

Solution. Adding 15 to both sides gives

$$
(x+2)^{2}=15
$$

Taking square-roots, we have

$$
x+2= \pm \sqrt{15}
$$

and so

$$
x=-2 \pm \sqrt{15} \text {. }
$$

