MATH 1010-2: PRACTICE EXAM \#1 SOLUTIONS

1. (24 points -3 points each) Determine if each of the following assertions is valid. Indicate you answer by clearly circling either TRUE or FALSE.
(a) The collection of pairs $\{(0,1),(1,2),(2,3),(3,4)\}$ represents a function.

TRUE FALSE
(b) The slope of the line given by $3 y+6 x-10=0$ is $-\frac{1}{2}$.

TRUE
FALSE
(c) There are real numbers which are not fractions.
TRUE
FALSE
(d) The following

is the graph of $f(x)=-x^{2}+2$.

$$
\begin{array}{|l|}
\hline \text { TRUE } \\
\hline
\end{array}
$$

FALSE
(e) The following

is the graph of $f(x)=x^{3}$.
FALSE
(f) $(-1)^{10}=1$.

FALSE
(g) If m is the slope of a line ℓ, then $-m$ is the slope of any line perpendicular to ℓ.

TRUE
FALSE
(h) No point on the line $y=x+2$ lies in the third quadrant.

TRUE
2. Simplify the following expression:

$$
3\left[(x-1)^{2}+2 x(2 x+1)-x^{3}\right]
$$

Solution. According to the rules of operations, we should first treat the exponent in $(x-1)^{2}$. Since $(x-1)^{2}=(x-1)(x-1)=x^{2}-2 x+1$, we get

$$
3\left[x^{2}-2 x+1+2 x(2 x+1)-x^{3}\right]
$$

The next operation we perform is the multiplication $2 x(2 x+1)=4 x^{2}+2 x$. So now we have

$$
3\left[x^{2}-2 x+1+4 x^{2}+2 x-x^{3}\right]
$$

Combining like terms inside the parenthesis gives

$$
3\left[5 x^{2}-x^{3}+1\right]
$$

Finally multiplying through by 3 we get

$$
15 x^{2}-3 x^{3}+3 .
$$

3. Solve the following equation for x

$$
|2 x+5|=4 .
$$

Solution. This is really two linear equations, namely

$$
2 x+5=4 \quad \text { or } \quad 2 x+5=-4 .
$$

The first gives $x=-\frac{2}{2}$, the second gives $x=-\frac{9}{2}$. So our answer is $x=-\frac{1}{2}$ or $x=-\frac{9}{2}$. Both of these check out.
4. Find the equation of the line through $(1,1)$ which is parallel to

$$
y=-2 x+5
$$

Write your answer in slope-intercept form.
Solution. The line $y=-2 x+5$ has slope -2 and any line parallel to it has the same slope. Thus we seek the line through $(1,1)$ with slope -2 . Using the point-slope form, we have

$$
(y-1)=-2(x-1)
$$

and simplifying we get

$$
y=-2 x+3
$$

5. Solve the following inequality for x. Then graph your solution on the number line.

$$
\frac{x-3}{3}+3 \leq \frac{x}{8}
$$

Solution. We clear the denominators by multiplying through by 24 to get

$$
8(x-3)+3 \cdot 24 \leq 3 x
$$

or

$$
8 x-24+72 \leq 3 x
$$

Subtracting $3 x$ and 48 from both sides gives

$$
5 x \leq-48
$$

and dividing by 5 gives the solution

$$
x \leq-\frac{48}{5}
$$

On the number line this is all points to the left of and including $-\frac{48}{5}$.
6. Ticket sales for a play total $\$ 2200$. There are three times as many adult tickets sold as children's tickets. The price of an adult ticket is $\$ 6$ and the price of a child's ticket is $\$ 4$. Find the number of children's tickets which were sold.

Solution. Let x be the number of children's tickets sold. Since they cost $\$ 4$ each, they contribute $4 x$ dollars to the total ticket sales. Meanwhile the number of adult tickets sold is three times the number of children's tickets, namely $3 x$, and since the cost of each is now $\$ 6$, the adult tickets contribute $6 \cdot 3 x=18 x$ dollars to the total sales. Thus

$$
4 x+18 x=2200
$$

or

$$
22 x=2200
$$

or finally

$$
x=100 \text {. }
$$

So there were 100 children's tickets sold.

