Math 1010 - Fall 2010 - Departmental Final Exam Answers

-1- Simplify:

$$
\begin{equation*}
\frac{\frac{3}{5}-\frac{2}{3}}{\frac{1}{3}+\frac{3}{5}}=\frac{\frac{9-10}{15}}{\frac{5+9}{15}}=\frac{-1}{15} \div \frac{14}{15}=\frac{-1}{15} \times \frac{15}{14}=-\frac{1}{14} . \tag{1}
\end{equation*}
$$

-2- Solve the equation

$$
\begin{equation*}
4 x-3=10-2(x-1) \tag{2}
\end{equation*}
$$

Proceeding as usual we obtain

$$
\begin{array}{rl|l}
4 x-3 & =10-2(x-1) & \text { distribute } \\
4 x-3 & =10-2 x+2 & \text { collect like terms } \\
4 x-3 & =12-2 x & +2 x+3 \\
6 x & =15 & \div 6 \tag{3}\\
x & =\frac{15}{6} & \text { the solution } \\
& =\frac{5}{2} & \text { simplified }
\end{array}
$$

Of course we check by substituting $x=\frac{5}{2}$ in the original equation that we have the right answer!
-3- Find all solutions of the equation

$$
\begin{equation*}
x^{2}-x-20=0 \tag{4}
\end{equation*}
$$

This equation can be solved factoring, by the quadratic formula, or by completing the square. Factoring gives

$$
\begin{equation*}
x^{2}-x-20=(x-5)(x+4) \tag{5}
\end{equation*}
$$

which implies that the solution is

$$
\begin{equation*}
x=-4 \quad \text { or } \quad x=5 \tag{6}
\end{equation*}
$$

Completing the square gives:

$$
\begin{array}{rl|l}
x^{2}-x-20 & =0 & +20+\frac{1}{4} \\
x^{2}-x+\frac{1}{4} & =\frac{81}{4} & \text { perfect square } \tag{7}\\
\left(x-\frac{1}{2}\right)^{2} & =\frac{81}{4} & \sqrt{ } \\
x-\frac{1}{2} & = \pm \frac{9}{2} & +\frac{1}{2} \\
x & =\frac{1}{2} \pm \frac{9}{2} & \text { the solution }
\end{array}
$$

which is the same result.
As for all quadratic equations, you can also apply the quadratic formula if you can remember it reliably. The solution of the quadratic equation

$$
\begin{equation*}
a x^{2}+b x=c=0 \tag{8}
\end{equation*}
$$

is given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

In this case, $a=1, b=-1$, and $x-20$. We obtain

$$
\begin{equation*}
x=\frac{1 \pm \sqrt{1-4 \times(-20)}}{2}=\frac{1 \pm \sqrt{81}}{2}=\frac{1 \pm 9}{2} \tag{9}
\end{equation*}
$$

which of course also is the same answer.
-4- Find all solutions of the equation

$$
\begin{equation*}
x^{2}-2 x-5=0 \tag{10}
\end{equation*}
$$

Completing the square as in the preceding problem we obtain:

$$
\begin{array}{rl|l}
x^{2}-2 x-5 & =0 & +6 \\
x^{2}-2 x+1 & =6 & \text { perfect square } \\
(x-1)^{2} & =6 & \sqrt{ } \tag{11}\\
x-1 & = \pm \sqrt{6} & +1 \\
x & =1 \pm \sqrt{6} & \text { the solution }
\end{array}
$$

-5- Find all solutions of

$$
\begin{equation*}
\frac{8}{x-2}-\frac{5}{x-3}+1=0 \tag{12}
\end{equation*}
$$

This equation can be converted into a quadratic equation by multiplying on both sides of the equation by the common denominator $(x-2)(x-3)$. We obtain:

$$
\begin{equation*}
8(x-3)-5(x-2)+(x-2)(x-3)=3 x-14+x^{2}-5 x+6=x^{2}-2 x-8=0 \tag{13}
\end{equation*}
$$

The last expression can be factored:

$$
\begin{equation*}
x^{2}-2 x-8=(x+2)(x-4) \tag{14}
\end{equation*}
$$

Thus

$$
\begin{equation*}
x=-2 \quad \text { or } \quad x=4 \tag{15}
\end{equation*}
$$

Substituting in the original equation shows that this is indeed the correct solution.
-6- Write the following polynomial expression in standard form. What is its degree and its leading coefficient?

$$
\begin{equation*}
\left(x^{2}-1\right)(x+3)+2 x+4 \tag{16}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
\left(x^{2}-1\right)(x+3)+2 x+4=x^{3}+3 x^{2}-x-3+2 x+4=x^{3}+3 x^{2}+x+1 \tag{17}
\end{equation*}
$$

This is a polynomial expression of degree 3 , with leading coefficient 1 .
-7- Precisely describe the (natural) domain of the function f defined by $f(x)=\ln (2 x-1)$.
The domain of the natural logarithm is the set of all positive real numbers. Therefore we must have $2 x-1>0$ which is equivalent to

$$
\begin{equation*}
x>\frac{1}{2} \tag{18}
\end{equation*}
$$

In interval notation the domain is $\left(\frac{1}{2}, \infty\right)$.
-8- For $f(x)=\ln (2 x-1)$ find $f\left(\frac{1}{2}\left(e^{x}+1\right)\right)$ and express it as simply as possible.
We get

$$
\begin{equation*}
f\left(\frac{1}{2}\left(e^{x}+1\right)\right)=\ln \left(2 \times \frac{1}{2}\left(e^{x}+1\right)-1\right)=\ln e^{x}=x \tag{19}
\end{equation*}
$$

Math 1010
-9- Evaluate

$$
\begin{equation*}
\log _{3} 54-\log _{3} 2=\log _{3} \frac{54}{2}=\log _{3} 27=3 \tag{20}
\end{equation*}
$$

-10- Solve the equation

$$
\begin{equation*}
\sqrt{x+4}+\sqrt{x+11}=7 \tag{21}
\end{equation*}
$$

We isolate the square roots and square one at a time:

$$
\begin{array}{rl|l}
\sqrt{x+4}+\sqrt{x+11} & =7 & \\
\sqrt{x+4} & =7-\sqrt{x+11} & -\sqrt{x+11} \tag{22}\\
x+4 & =49-14 \sqrt{x+11}+x+11 & ()^{2} \\
+14 \sqrt{x+1} \\
14 \sqrt{x+11} & =56 & \div 14 \\
\sqrt{x+11} & =4 & ()^{2} \\
x+11 & =16 & \\
x & =5 & \\
\text { the answer }
\end{array}
$$

-11- Simplify (i.e., write with only positive exponents, such that x and y occur only once) the expression

$$
\begin{equation*}
\frac{\left(x^{2} y^{-3}\right)^{2}}{\left(x^{-1} y\right)^{-3}} \tag{23}
\end{equation*}
$$

We apply the Rules

$$
\begin{equation*}
a^{m} a^{n}=a^{m+n}, \quad\left(a^{m}\right)^{n}=a^{m n}, \quad(a b)^{n}=a^{n} b^{n}, \quad \text { and } \quad a^{-n}=\frac{1}{a^{n}} \tag{24}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\frac{\left(x^{2} y^{-3}\right)^{2}}{\left(x^{-1} y\right)^{-3}}=\frac{x^{4} y^{-6}}{x^{3} y^{-3}}=x^{4-3} y^{-6+3}=x y^{-3}=\frac{x}{y^{3}} \tag{25}
\end{equation*}
$$

-12- Simplify

$$
\begin{equation*}
\frac{\sqrt[3]{16 x^{4} y^{6} z^{7}}}{\sqrt[3]{2 x^{7} z}}=\left(8 x^{-3} y^{6} z^{6}\right)^{\frac{1}{3}}=2 x^{-1} y^{2} z^{2}=\frac{2 y^{2} z^{2}}{x} \tag{26}
\end{equation*}
$$

Either of the last two expressions would be a correct answer. The important part is that in the simplified version each variable occurs just once.
-13- Solve the system

$$
\begin{align*}
& 4 x-y=1 \tag{27}\\
& 2 x+y=0
\end{align*}
$$

Show all your work, don't just give the answer.
Adding the two equations gives $6 x=1$ which implies

$$
\begin{equation*}
x=\frac{1}{6} . \tag{28}
\end{equation*}
$$

Math 1010
Fall 2010

Substituting in the first equation gives $\frac{4}{6}-y=1$ which implies

$$
\begin{equation*}
y=\frac{4}{6}-1=-\frac{1}{3} . \tag{29}
\end{equation*}
$$

To summarize, we get

$$
x=\frac{1}{6} \quad \text { and } \quad y=-\frac{1}{3}, \quad \text { or } \quad(x, y)=\left(\frac{1}{6},-\frac{1}{3}\right)
$$

Either of these notations would be acceptable as an answer.
Substituting the values of x and y in the original equations shows that we have the right solution.
-14- Solve the linear system

$$
\begin{array}{r}
x+y+z=5 \\
x+2 y-z=3 \tag{30}\\
2 x+3 y-z=5
\end{array}
$$

Again, state how you solve it, don't just give the answer.
This is a little more elaborate. We write equation numbers in square brackets and obtain:

$$
\begin{array}{cccc|l}
x+y+z & = & 5 & {[1]} \\
x+2 y-z & = & 3 & {[2]} \\
2 x+3 y-z & = & 5 & {[3]} \\
& y & -2 z & = & -2 \tag{31}\\
y-3 z & = & -5 & {[4]=[2]-[1]} \\
& z & = & {[5]=[3]-2 \times[1]} & {[6]=[4]-[5]}
\end{array}
$$

Thus $z=3$, and we obtain from equation [4] that $y=2 z-2=4$. Finally, we obtain from equation [1] that $x=5-y-z=-2$. Thus

$$
\begin{equation*}
x=-2, \quad y=4, \quad z=3 \tag{32}
\end{equation*}
$$

-15- Find the slope-intercept form of the equation of the line that passes through $(2,1)$ and has slope $-1 / 2$.

Figure 1. Graph of $y=-\frac{x}{2}+2$, question 15.

The point slope form of the equation of a straight line gives

$$
\begin{equation*}
\frac{y-1}{x-2}=-\frac{1}{2} \tag{33}
\end{equation*}
$$

The slope-intercept form of that equation is

$$
\begin{equation*}
y=1-\frac{1}{2}(x-2)=-\frac{1}{2} x+2 \tag{34}
\end{equation*}
$$

The graph is shown in Figure 1.
-16- Find the distance between the points $(-1,3)$ and $(2,4)$.
We apply the distance formula, giving:

$$
\begin{equation*}
d=\sqrt{(-1-2)^{2}+(3-4)^{2}}=\sqrt{10} \tag{35}
\end{equation*}
$$

-17- Express $\frac{2}{x+1}+\frac{1}{x-2}+\frac{2}{x-3}$ as a single rational expression. Write the numerator of your answer as a polynomial in standard form. You may leave the denominator factored into linear factors.

We get

$$
\begin{align*}
\frac{2}{x+1}+\frac{1}{x-2}+\frac{2}{x-3} & =\frac{2(x-2)(x-3)+(x+1)(x-3)+2(x+1)(x-2)}{(x+1)(x-2)(x-3)} \\
& =\frac{2\left(x^{2}-5 x+6\right)+x^{2}-2 x-3+2\left(x^{2}-x-2\right)}{(x+1)(x-2)(x-3)} \\
& =\frac{2 x^{2}-10 x+12+x^{2}-2 x-3+2 x^{2}-2 x-4}{(x+1)(x-2)(x-3)} \tag{36}\\
& =\frac{5 x^{2}-14 x+5}{(x+1)(x-2)(x-3)}
\end{align*}
$$

-18- Macy's is having their annual white sale where all sheets are discounted 20%. A set of sheets is on sale for $\$ 48$. What was the original price of the sheets?

If x is the original price of the set of sheets then $\$ 48$ is 80% of x, i.e., $48=0.8 x$. Dividing on both sides by 0.8 gives the original price:

$$
\begin{equation*}
x=\frac{48}{0.8}=\$ 60 \tag{37}
\end{equation*}
$$

-19- You and your brother working together take 3 hours to dig a hole. By yourself it would take you five hours. How long would it take your brother to dig the hole by himself?

Suppose it takes your brother x hours to dig the hole by himself. In one hour he can $\operatorname{dig} 1 / x$ of the hole, the two of you together can $\operatorname{dig} 1 / 3$ of the hole, and by yourself you can $\operatorname{dig} 1 / 5$ of the hole. Thus

$$
\begin{equation*}
\frac{1}{x}+\frac{1}{5}=\frac{1}{3} \tag{38}
\end{equation*}
$$

Multiplying with $15 x$ on both sides gives the linear equation

$$
\begin{equation*}
15+3 x=5 x \tag{39}
\end{equation*}
$$

which has the solution

$$
\begin{equation*}
x=\frac{15}{2} \text { hours. } \tag{40}
\end{equation*}
$$

(It's OK to say that the solution is 7.5 hours, or seven and a half hours.)
-20- Carbon $14\left({ }^{14} \mathrm{C}\right)$ has a half life of 5730 years. If you start with 16 milligrams of Carbon 14 , how much is left after $4 \times 5730=22920$ years?

The original amount of Carbon 14 gets divided by 2 every 5730 years. During four such periods of 5730 years each we divide by $2^{4}=16$. Thus after 22920 years we are left with 1 mg of Carbon 14 .

