
Optimizing the spiking fraction

The three cases GG, CC, and GC are particularly challenging to distinguish directly, in which
case ‘spiking’, or adding a certain fraction of a known homozygote, can provide additional informa-
tion in terms of the heteroduplexes which may be formed in the resulting mixture. Most simply, if
the unknown sample is identical to the known spike, there will be no heteroduplexes formed and
the melting curve does not change. If the unknown sample is the opposite homozygote, then the
spike will cause some heteroduplexes will be formed. If the unknown sample is heterozygous, the
presence of the spike will reduce the heteroduplex proportion from one half of all duplexes (one
fourth for each of two types) to some smaller fraction.

We wish to optimize the amount of spike we should add, to best separate the heteroduplex
proportions resulting from mixing it with each of these three unknowns. If we use x to denote the
fraction of spike in the mixture then y = 1 − x is the fraction of unknown sample. For example if
we add 1

3
as much spike as unknown, then x = 1

4
and y = 3

4
. The total heteroduplex fraction for

each of these three relationships of the unknown to the spike is given by
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The formula for h1 states that if the spike and unknown represent the same homozygote,

not heteroduplexes are formed. The formula for h2 states that two kinds of heteroduplexes are
formed, each in proportion to the fraction of the complementary strands present. The proportion
of each strand of spike is x and each strand of unknown is y. Spike homoduplexes are formed in
proportion xx = x2, unknown homoduplexes are formed in proportion yy = y2, and two types of
spike-unknown heteroduplexes are formed in proportion xy +yx. The same reasoning applies to h3

with the understanding that half of each of the strands comprising the unknown are the same as
those of the spike and half are opposite. Therefore we divide the unknown portion y = 1 − x into
two halves, one of which we combine with the spike x′ = x + 1−x

2
, and the remainder, y′ = 1−x

2
,

and compute the proportion of heteroduplexes formed, x′y′ + y′x′, as we did in the previous case.
Now we need only look to find where the separation between these three graphs is maximized.

Observe that h3 has 1

2
heteroduplexes while h1 and h2 have zero heteroduplexes when no spike is

present (x = 0) and all three have zero heteroduplexes when there is nothing but spike (x = 1).
The graphs of h2 and h3 intersect at x = 1
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, where h2(
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) = 4

9
. So the best separation

will be for some value of x < 1
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where h2 is equidistant from h1 = 0 and h3. This observation leads

to the equation h3 − h2 = h2 − h1 or
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which is equivalent to the standard form
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The quadratic formula gives two solutions, x = 1 (where we have observed h1 = h2 = h3 = 0) and
the optimal spiking fraction, x = 1

7
. Our conclusion is that adding 1/6 as much spike as unknown,

resulting in proportions x = 1

7
and y = 6

7
, provides the optimal separation in the proportion of

heteroduplexes in the resulting mixtures. In particular, h1(
1

7
) = 0, h2(

1

7
) = 12/49, and h3(

1
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) = 24

49
.

The analysis does not depend upon the base in the mutant homozygote being complementary
to the base in the wild type, i.e., the same spike fraction would also optimal for distinguishing
among, for example, GG and AA homozygotes and AG heterozygotes.


